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Phonon Engineering: 
an introduction
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• Phononic thermal conductivity

• Phonon scattering mechanisms

• Phonons at nanoscale

• Phonon transmission at interfaces

• Phonons in novel materials

• Heat transfer phonons and 
measurements

The Phononic heat conduction

spectrum !

intrinisc

solve BTE

diffuse ?

better transport ?

techniques



Thermal conductivity k has different contributions:
k = kphonon+ kelectron

Wiedemann-Franz law for an approximation of electronic contribution in the 
thermal conductivity
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Contributions to the heat conduction…
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Phononic thermal conductivity



The model of the thermal conductivity

• Solution of a Boltzmann transport equation (Peierls)

(Relaxation time approximation) 
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The model of the thermal conductivity

• Solution of a Boltzmann transport equation (Peierls)

(Relaxation time approximation) 

Planck’s law for phonons
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Debye wavelength

D=hvs/2.8kBT
vs, Si  ~ 4.5 103 ms-1

Wien’s law for phonons
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MD calculations with bulk Si

Lü, JAP 104,  054314 (2008)

Calculated phonon density of states
(D) in a e=37 nm Si nanowire

=1 nm

Henry and Chen, 
J. Comp. Theo. Nanosci 5, 1 (2008)

peak=2 nm

Phonon spectrum
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Debye

Real dispersion
relation

k

DOS

Balandin

Phononic thermal conductivity
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Which phonons ?

The acoustic phonons are carrying the heat. 

Chen, JHT (1998)

NB: Different from
the specific heat !

Si (Y. Garcia)

Phononic thermal conductivity

k



• Critical parameter: The phonon relaxation time

as without it the propagation would be infinite !

In this absence of defects, it is due to the nonlinearity of the force
field between atoms

NB: k has a 3D meaning…

 FPI (Fermi Pasta Ulam) paradox of the atomic chain

k does not always exist when nonlinearity !
k~L not always

Finiteness of the thermal conductivity..?

see Lepri etc.
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Phonon scattering mechnisms



Scattering mechanisms

Origin of the different terms in the mean free path

• Umklapp (Klemens model)                            U ~ A1 e- D/bTTn m

Origin: Nonlinearity=Anharmonicity !!

NIPS Summer school, August 2010

that do not conserve the momentum

ħ 1+ ħ 2= ħ 3

Phonon scattering mechnisms
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(Very schematic !!)

k1k2

k1 + k2 = k3
’  but k3 in the end

G



Scattering mechanisms

Origin of the different terms in the mean free path

• Umklapp (Klemens model)                            U ~ A1 e- D/bTT3 2

• Boundary scattering of the particle B ~ A2 v( )/D

Origin: Nonlinearity=Anharmonicity !!
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Phonon scattering mechnisms

To be taken into account only in crude model if 
dispersion relation have not been calculated !

k

D



Scattering mechanisms

Origin of the different terms in the mean free path

• Umklapp (Klemens model)                            U ~ A1 e- D/bTT3 2

• Boundary scattering of the particle B ~ A2 v( )/D

• ‘Rayleigh’ scattering due to impurities
Similar to electromagneticsMie theory ~ A3

4 (dpart<< )

Origin: Nonlinearity=Anharmonicity !!
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Phonon scattering mechnisms

Majumdar, JAP (2005)



Scattering mechanisms

Origin of the different terms in the mean free path

• Umklapp (Klemens model)                            U ~ A1 e- D/bTT3 2

• Boundary scattering of the particle B ~ A2 v( )/D

• ‘Rayleigh’ scattering due to impurities
Similar to electromagneticsMie theory ~ A3

4 (dpart<< )

• Electron-phonon interaction

e-ph ~ T

Origin: Nonlinearity=Anharmonicity !!
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Phonon scattering mechnisms



Scattering mechanisms

Origin of the different terms in the mean free path

• Umklapp (Klemens model)                            U ~ A1 e- D/bTT3 2

• Boundary scattering of the particle B ~ A2 v( )/D

• ‘Rayleigh’ scattering due to impurities
Similar to electromagneticsMie theory ~ A3

4 (dpart<< )

• Electron-phonon interaction

e-ph ~ T

Usually: Mathiessen rule of the relaxation time i

NB: Curious: Same treatment of elastic, inelastic etc. liftetime

Origin: Nonlinearity=Anharmonicity !!
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Phonon scattering mechnisms



J.Y. Duquesne, INSP, Paris

10nm Si particles in a matrix of Ge

Leading mean free paths…

Wave !

Scattering mechanisms (2)
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Phonon scattering mechnisms

=vg

Boundaries



Henry and Chen, J. Comp. Theo. Nanosci 5, 1 (2008)

MD calculations with bulk Si

Mean free path distribution
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= vg

Phonon scattering mechnisms



How to deal with BTE at low D ?

• At small scale (space/time), the Fourier approach breaks down !

• One needs then                                      or
to solve the BTE (long !)                     to use a simulation method

at the atomic scale

•

• ‘Grey approximation’   
NIPS Summer school, August 2010

Phonon density of states

Phonon mean free path

Dispersion relation → wave effect

Limitation of the approach:    L~ v nm

@RT) L~ nm?

Particle transport effect

- Probabilistic: Monte-Carlo method

- Approx: Discrete ordinate (Radiation)
- Approx.: Ballistic-diffusive equation

- Molecular dynamics
- Lattice dynamics
- Atomistic Green’s function method

Phonons at nanoscale



Examples taken from Lacroix, Joulain, PRB (2005)

Propagation of heat

Stationary temperature profile between two
parallel thermalized media
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‘Temperature jump’
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NB: Cattaneo-Vernotte

Fourier vs BTE at nanoscale

also incomplete

Phonons at nanoscale



Reducing the thermal conductivity

• Useful for the generation of thermoelectricity !

Efficiency depends on figure-of-merit ZT

Z=  S / ( kel +  kph )  

Strategies to decrease kph

(without impact on and S )

Adding impurities or nanoparticles !

 impacts the high-frequency
acoustic phonons

Majumdar, PRL (2007)

Impurities or nanoparticles
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ErAs in InGaAs

Phonons at nanoscale



Reducing the thermal conductivity

• Useful for the generation of thermoelectricity !

Efficiency depends on figure-of-merit ZT

Z=  S / ( kel +  kph )  

Strategies to decrease kph

(without impact on and S )

Adding boundaries

 impacts all phonons

Chen and Ren, Science (2008)

Boundaries
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Ball-milling

Phonons at nanoscale



Reducing the thermal conductivity

• Useful for the generation of thermoelectricity !

Efficiency depends on figure-of-merit ZT

Z=  S / ( kel +  kph )  

Strategies to decrease kph

(without impact on and S )

Adding boundaries

 impacts all phonons

Here in nanowires

Majumdar, APL (2003)

Boundaries
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Phonons at nanoscale



Reducing the thermal conductivity

• Useful for the generation of thermoelectricity !

Efficiency depends on figure-of-merit ZT

Z=  S / ( kel +  kph )  

Strategies to decrease kph

(without impact on and S )

Adding amorphous layers
at the boundaries

 further reduces  the
thermal conductivity !

Majumdar, Nature (2009)
See also Heat, same issue

TEM

Roughness
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Phonons at nanoscale



Phonon transmission at interfaces ?

• Wave model for the low-frequency phonons

Z1= c1

NB: Terminology issue:    Kapitza resistance (fluid-solid)
Thermal interface resistance (thick interface)
Thermal boundary resistance

surface

Transistor level

Heat spreader

Polymer-based layer
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T=4Z1Z2/(Z1+Z2)2

1 2

Z2

Phonon transmission at interfaces

Acoustic wave !



Phonon transmission at interfaces ?

• More difficulty for the high frequency acoustic phonons

Diffuse mismatch model
= limit of strong diffuse scattering
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(2)
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1 2

Phonon transmission at interfaces



Acoustic mismatch and diffuse mismatch models

Swartz and Pohl, RMP (1987)

In bulk systems, the resistances with DMM and AMM are similar (30%)
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DMM: ‘All correlations between ingoing and outgoing phonons are ignored’

t ( )= r ( )= 1-t ( )
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Phonon transmission at interfaces



Metal dielectric interface

• Measured values higher than prediction

ph1-ph2

ph2 - e-2

1

2

ph1-ph2

ph2 - e-2

1

2

NIPS Summer school, August 2010 (Phonon particule)

Maxwell-Garnett approximation

= 3 2/R 

R1

R2

Thermal “surface resistance”

3

1

Chapuis

Phonon transmission at interfaces



Thermal conductivity of ‘new’ materials

• Porous materials to harvest energy

• Other types of low-thermal conductivity
materials (beating the ‘Einstein limit’ of amorphous materials)
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kair(300 K)=0.025 Wm-1K-1

Chiritescu, Science
(2007)

Goodson, Science
(2007)

Disordered layered crystal

Phonons in novel materials

Bera, PRL (2010)



Thermal conductivity of ‘novel’ materials

• Carbon nanotubes

• Graphene

MWCNT: Kim et al, PRL(2001)

k=3000 Wm-1K-1

Li Shi, Science (2010)

Balandin, Nano Letters (2008)
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Phonons in novel materials



Other types of engineering

• Rectification ?

• Phonon-based motor ?

Carbon nanotubes loaded with gradient of molecule
density

Chang, ..,Majumdar, Zettl, Science 2006
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Phonons in novel materials

Bachtold, Science (2008)

For the moment only due to the 
thermal gradient



Usual methods for heat transport characterisation

• 3 method (Cahill, RSI, 1989)  

Based on R=R0 (1+ T) 

and   T ∞ P=R [ I0 cos t ]2

U3 = /2 R0I0 T2

• Suspended microresistors (Shi and Majumdar)

• Ultrafast pump-probe spectroscopy
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ICN and VTT

S. Dilhaire (Bordeaux)

Shi and Majumdar

Heat transfer phonons and measurements
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Heat transfer phonons and measurements

• R(T) = R0 (1 + T)                                        Resistance depends on temperature

• I = I0 cos( t)  P(t) = R I(t)2 = ½ R (1 + cos(2 t))         Joule heating of an electric
 T(t) = T0 + TDC + T2 cos(2 t+ 2 )                                             wire

• U = RI = R0 I0 [1 + TDC + T2 cos(2 t+ 2 ) ] cos( t) 

= R0  I0 [(1+ TDC) cos( t) + ½ T2 cos( t- 2 ) + ½ T2 cos(3 t 2 ) ]

= U + ½ R0I0 T2 cos(3 t+ 2 )

• Temperature of the wire = f(heat flux to the sample)

THE 3 METHOD



• Wave behaviour superimposed to the quasiparticle behaviour

• Research driven by thermoeletric community and the quest for better
insulator [lower k] or by microelectronics for better conductors [higher k]

• Still plenty of room…

- Demonstration of the Boltzmann transport equation for phonons ?

- Phonon relaxation time/mean free path

- Degree of diffusivity at the interface

- Filters and interference effects

- Localization etc.

- Amorphous materials… [not tackled here !]

Conclusions
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- Books

- G. Chen, Nanoscale energy transport and conversion

- S. Volz (ed), Microscale and Nanoscale Heat Transfer

- S. Volz (ed), Thermal Nanosystems and Nanomaterials

- Z.M. Zhang, Nano/Microscale heat transfer

- …

Reviews or interesting articles

- A. Balandin, Phonon Engineering, J. Nanosc. & Nanotech 5, 1015 (2005)

- D. Cahill et al., Nanoscale thermal transport, J. Appl. Phys. 93, 793 (2003)

- A. Henry and G. Chen, J. Comp. Theo. Nanosci. 5, 1 (2008)

- …

Useful references
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