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I’ James Watt Nanofabrication Centre @Glasgow

Vistec VB6 & EBPG5
Istec © 750m2 cleanroom - pseudo-industrial operation

Q 18 technicians + 5 research technologists
(PhD level process engineers)

Large number of process modules
E-beam lithography

O Processes include: Si/SiGe/Ge, llI-V, II-VI, piezoelectric
MMICs, optoelectronics, metamaterials, MEMS

0 Commercial access through KNT

Suss MAG optical & o
nanoimprint lithography

http://www.jwnc.gla.ac.uk

8 RIE / PECVD 3 Metal dep tools 4 SEMs: Hitachi S4700 Veeco: AFMs




James Watt Nanofabrication Centre @Glasgow

In School of Engineering

Q@ £53M active research grant portfolio (E14M pa, industry ~£1M)

© 29 highest cited E&EE Department in UK after Cambridge

World Bests:

O

Smallest electron-beam lithography pattern — 3 nm

Best layer-to-layer alignment accuracy (0.42 nm rms)

Smallest diamond transistor (50 nm gate length)

Lowest loss silicon optical waveguide (< 0.9 dB/cm)

Fastest mode locked laser (2.1 THz)

Highest Q silicon nanowire cavity (Q =177,000)
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Thermoelectrics
History: Seebeck effect 1822

heat — electric current
Peltier (1834): current —> cooling

Physics: Thomson (Lord Kelvin) 1850s
° TIoffe: physics (1950s), first devices 1950s - 1960s, commercial modules 1960s

Present applications:

° Peltier coolers (telecoms lasers, rf / mm-wave electronics, beer! etc...)

o Thermoelectric generators — some industrial energy harvesting

As renewable energy interest increases, renewed interest in thermoelectrics
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Why Use Thermoelectrics?

No moving parts —> no maintenance

Peltier Coolers: fast feedback control mechanisms —> AT < 0.1 °C

Scalable to the nanoscale —> physics still works (some enhancements)
but power x area

Most losses result in heat

Most heat sources are “‘static’’

Waste heat from many systems
could be harvested

home, industry, background
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Background Physics

Fourier thermal transport

Q = heat (power i.e energy / time)

Er = chemical potential
V = voltage

A = area

q = electron charge

g(E) = density of states

kg = Boltzmann’s constant

Joule heating

R = resistance

I =current (J =1/A)

K = thermal conductivity
o = electrical conductivity
(¢ = Seebeck coefficient

f(E) = Fermi function

H(E) = mobility

D.Y. Paul
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The Peltier Effect

heat transfer, Q

Peltier coefficient, H units: WA=V

0 Peltier coefficient is the energy carried by each electron per unit charge & time

D.J. Paul Umver51ty
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The Peltier Coefficient

Full derivation uses relaxation time approximation
& Boltzmann equation

_ 1 . o(E)
II = qlf(E Er) - dE

o= [o(E)dE = q [ g(E)u(E)f(E)[1 — f(E)|dE

This derivation works well for high temperatures (> 100 K)

At low temperatures phonon drag effects must be added

see H. Fritzsche, Solid State Comm. 9, 1813 (1971)
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The Seebeck Effect

° Open circuit voltage,V=a (Th-T.) = o AT

dV
Seebeck coefficient, (X — dT units: V/K

o Seebeck coefficient = % X entropy ( % ) transported with charge carrier

D.Y. Paul
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Measuring Seebeck Coefficient

o Physically heat one side of sample

thermocouple
I Ty, o Cold sink at the other side of sample

AT

thermocouple

o Thermocouples top and bottom
to measure AT

O 4 terminal electrical measurements
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The Seebeck Coefficient

o Full derivation uses relaxation time approximation, Boltzmann equation

For electrons in the conduction band, E. of a semiconductor

S _k_B EC_EF I

fooo (El:{]_:,:r‘:) c(E)dE
/5 o(E)dE

see H. Fritzsche, Solid State Comm. 9, 1813 (1971)
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The Seebeck Coefficient for Metals
f(1-f)=-kgT%

Expand g(E) ,u(E) in Taylor’s series at E = Er

m’ kB kgT {d ln(“g)} Eg (Mott’s formula)
Mott and Jones, 1958

o i.e. Seebeck coefficient depends on the asymmetry
of the current contributions above and below Er

Using the energy-independent scattering approximation:

87r2sz * T %
o Q= 3enh2z 111 T (3_n) n=carrier density

M. Cutler et al., Phys. Rev. 133,A1143 (1964)
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Semiconductor Example: SiGe Alloys
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The Thomson Effect

dx
Q —m83 ——

o Is temperature dependent

dQ _ g7dT
0 dx dx

Thomson coefficient, 3 dQ = GIdT units: V/K

D.J. Paul Umver51ty
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The Kelvin Relationships

Derived using irreversible thermodynamics

O
O
O

D.Y. Paul

These relationships hold for all materials

Seebeck, a is easy to measure experimentally

Therefore measure «. to obtain II and 5
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Peltier Effect, Heat Flux and Temperature

o If a current of I flows through a thermoelectric material between
hot and cold reservoirs:

o Heat flux per unit area =

y side ( = Peltier + Fourier )

current, o % — 11J — kVT

Area, A

||
Heat

(energy/t) = Q
but IT =T anda J=+&

cold side

Q=alT — KAVT
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Semiconductors and Thermoelectrics

Seebeck effect: Peltier effect:

electricity electrical
generation cooling

heat source Ty heat source Ty

Heat transfer

Q

heat sink T,

Battery
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heat source Th

heat sink T,

Load, RL

R=Rn+Rp

D.Y. Paul
School of Engineering

Conversion Efficiency

O

power supplied to load

" "heat absorbed at hot junction

Power to load (Joule heating) = I2Ry,

Heat absorbed at hot junction = Peltier heat
+ heat withdrawn from hot junction

Peltier heat — II1 = oIT}y,

_ o(Th—T¢)
o R+Ryg,

(Ohms Law)

Heat withdrawn from hot junction
= kA (T, — T.) — 3I°R

NB half Joule heat returned to hot junction

A Universit
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heat source Th

Conversion Efficiency
o 1= power supplied to load ~_ power supplied to load

heat absorbed at hot junction Peltler + heat withdrawn

_ IR,
77 o CkITh—I—HJA(Th—TC)— %IzR

For maximum value dn

Th—

nmax T

= Carnot X Joule losses and irreversible
processes
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Thermoelectric Power Generating Efficiency
AT 1+ZT—1
Th \J1+ZT+ g—z

Temperature difference, AT (°C)
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Heat Transfer in Thermoelectric Element
o But n-type and p-type materials are seldom identical

/ heat source Th
area, A,

area, Ay, —_

heat sink

o Z for a couple depends on relative dimensions

. . LA, Onkn
o Z is maximum for LoAm  \/ opkp
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Maximising ZT for an Unbalanced Couple

heat source Th
LA
| o S Onkn
LobAm OpKp
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Maximum Temperature Drop

As the system has thermal conductivity © a maximum AT which can be
sustained across a module is limited due to heat transport

AT max = 2ZT?2

heat source Th

The efficiency cannot be increased indefinitely
by increasing Th

The thermal conductivity also limits maximum
AT in Peltier coolers heat sink T.

Higher ATmax requires better Z materials

School of Engineering
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Thermodynamic Efficiency: The Competition

80

Carnot efficiency —
Thermodynamic limit

70 ZT=infinity

60 ZT1=20, unIiker/

50 ' o Solar/Brayton
Nuclear/Brayton+Rankine ©

40 Solar/Stirling Z1= us
® @ Nuclear/Rankine
30 ® Solar/Rapkine ZT=2, plausible eventually” |

Efficiency (%)

20 /
z

@ement/Org. Rankine T=0.7, available today = |
10 OGeothermal/Kalina /’—

Geothermal/Org. Rankine

O | | | | | | | | |
300 400 500 600 700 800 900 1,000 1,100 1,200 1,300

Heat source temperature (K)

o Z.T of 4 start to become seriously competitive

C.B. Vining, Nature Mat. 8, 83 (2009)
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Power Generation From Macro to Micro

Ilustrative schematic diagram

At large scale, thermodynamic

“Engines’ engines more efficient than TE

Cross over

Z'T average for bothn and p
TE (ZT=2) over all temperature range

Efficiency (%)

TE today

Diagram assumes high T
10°
Power level (W,)

O At the mm and pm scale with powers << 1W, thermoelectrics are
more efficient than thermodynamic engines (Reynolds no. etc..)

C.B. Vining, Nature Mat. 8, 83 (2009)

D.Y. Paul
School of Engineering




Thermal Conductivity of Bulk Materials

o Both the lattice and electron current can contribute to heat transfer

thermal conductivity = electron contribution + phonon contribution
= (electrical conductivity) + (lattice contributions)

K = Kel T Kph

° For low carrier densities in semiconductors (non-degenerate) Kel << Kph

o For high carrier densities in semiconductors (degenerate) Kel > Kph

O Good thermoelectric materials should ideally have Kel << Kph

i.e. electrical and thermal conductivities are largely decoupled

School of Engineering

D.9. Paul University

of Glasgow




Phonons: Lattice Vibration Heat Transfer
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optic modes - neighbours in antiphase
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Wiedemann-Franz Law

° Empirical law from experimental observation that aiT = constant for metals

o Drude model’s great success was an explanation of Wiedemann-Franz

o Drude model assumes bulk of thermal transport by conduction electrons
in metals

o Success fortuitous: two factors of 100 cancel to produce the empirical
result from the Drude theory

0 Incorrect assumption: classical gas laws cannot be applied to electron gas

School of Engineering
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Wiedemann-Franz Law for Metals

o In metals, the thermal conductivity is dominated by K¢]

2
ﬂ — % ( g9 ) — 1 L = Lorentz number
K s kg = 2.45 x 10-8 W-QK-2

2
) =4.09 x 107 o? for Kel 2> Kph

Exceptions:
o most exceptions systems with Ke] << Kph

Q some pure metals at low temperatures
o certain alloys where small Ke] results in significant Kph contribution

o certain low dimensional structures where <KphL can dominate

D.Y. Paul
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Bi2Tes ZT Optimisation Through Doping

° Maximum ZT requires
compromises with o, 0 & K

®) Limited by
Wiedemann-Franz Law

o Maximum ZT ~ 1
at ~100 °C

|
1019 1020 102

Carrier concentration (cm—3)
G.J. Snyder et al., Nature Mat. 7, 105 (2008)
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Optimising ZT in Bulk by Reducing Kph

° Example for Bi;Te; where Rph
is theoretically reduced by x 4

o Polycrystalline or defects can be used
to reduce Kph faster than o

2

° ZT:L(]_{KJph

)

Kel

“Phonon glasses’ search to
improve ZT

, . .
Carrier concentration (cm™) G.J. Snyder et al., Nature Mat. 7, 105 (2008)
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Bulk Thermoelectric Materials Performance

n-Type zT y p-Type zT

1.2

TAGS
Sh,Te, Yb,,MnSb;,

N 1.0 CeFe,Sh,,

0.8+ :
I PbTe SiGe
0.6

04+

| Bi,Te,

200 400 600 800 1,000
Temperature (°C) Temperature (°C)
Nature Materials 7, 105 (2008)

o Bulk n-Bi;Te3; and p-Sb:Tes used in most commercial Peltier coolers

0 Bulk Si1xGex (x~0.2 to 0.3) used for high temperature satellite applications
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Thermoelectric Generators / Peltier Coolers

Bulk n-Bi>Tes and p-Sb.Tes devices

D.J. Paul M University
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Small Scale Microfabricated Energy Harvesting

o Si process: poly-Si
Q nip =160 xV/K
Q »=314WmIK-!

o 0 =15 mQ2-cm
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M. Strasser et al., Sensors Actuators A 114,362 (2004)
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4 6 8 10
temperature difference over chip [K]
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Micropelt: Microfabricated Bi2Tes Technology

http://www.micropelt.com/

D.9. Paul University
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Micropelt Peltier Coolers for Lasers

o Microfabricated BixTes; thermoelectric devices

d

http://www.micropelt.com/

D.9. Paul University
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Micropelt Bi>Tesz Thermoelectric Energy Harvester

34 mmx 3.4 mm
thermoelectric chip

http://www.micropelt.com/

D.9. Paul University
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Present Thermoelectric Energy Harvesting

o VW and BMW announced TE on exhaust in 2008: 24 Bi;Tes modules
o 600 W under motorway driving —> 30% of car’s electrical requirement

o 5% reduction in fuel consumption through removing alternator

School of Engineering
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NASA Radioisotope Thermoelectric Generator

Radioisotope heater —> thermoelectric generator —> electricity

Voyager — Pu?238

Pu238
fuel pellet

o 470 W @ 30 V on launch, after 33 years power = 470 x 2~

School of Engineering

D.9. Paul University

of Glasgow




Energy Conversion: Electricity: The Rankine Cycle

Temperature needs to be reduced by 80 °C for carbon capture

C Combustion Gases

Steam Turbine
Generator

Pulverized
Coal

o L
Air ‘ Va\
Courtesy of TXU  Boiler Condenser Electricity

Cooling towers —> throw heat away —> added losses

Energy stored in fuel ==3» heat === Kinetic energy ===3 electric energy

School of Engineering

D.9. Paul University

of Glasgow




U.K. Electricity Generation 2007

® Nuclear
® Other
Renewables Coal
3% ® Renewables
® Gas
o Oil

80% generate CO;

97 % use the Rankine
Cycle

http://www.berr.gov.uk/energyl/statistics/

D.9. Paul University
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http://www.berr.gov.uk/energy/statistics/
http://www.berr.gov.uk/energy/statistics/

Main Strategies for Optimising ZT

Reducing thermal conductivity faster than electrical conductivity:

o e.g. skutterudite structure: filling voids with heavy atoms

Low-dimensional structures:

2
o Increase o through enhanced DOS (a0 = — % ?B

kBT {d 1“(#8)} EF)

Q Make o and ¢ almost independent

o Reduce K through numerous interfaces to increase phonon scattering

Energy filtering: / enhance

(E—E¢)
o o — ks | Ec—EF + fo kBTC o(E)dE Y.I. Ravich et al., Phys. Stat. Sol. (b)
_ kg T [5° o(E)dE 43,453 (1971)

Carrier Pocket Engineering — strain & band structure engineering

D.J. paul M University
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Length Scales: Mean Free Paths

m-*

3D electron mean free path = VFTm = (3772 n) % % o

m*

(= %(3%210)

3D phonon mean free path

O C, = specific heat capacity
° <v¢> = average phonon velocity

O 0 = density of phonons

o A structure may be 2D or 3D for electrons but 1 D for phonons
(or vice versa!)

D.Y. Paul
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Complex Crystal Structures: Reducing Rph

Skutterudite structure: filling voids
with heavy atoms

Hfo 75270 25NiSN

TAGS
Ag,TiTe
%@4
Yb. ,MnSb.
nsh, | MnSbi —ZT ~1 @ 900 °C

_ Baglasbey,
0 200 400 600 800

Temperature °C

0

G.J. Snyder et al., Nat. Mat. 7, 105 (2008)
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Electron Crystal - Phonon Glass Materials

° Principle: trying to copy ‘“High T.”’ superconductor structures
o Heavy ion / atom layers for phonon scattering

0 High mobility electron layers for high electrical conductivity

NaxCoO: CaxYb1xZnzSb;
° Only small improvements to ZT observed

G.J. Snyder et al., Nat. Mat. 7, 105 (2008)
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AgPbi1sSbTe20 - Nanoparticle Scattering?

o=-335 uVK-1
o = 30,000 S/m
k=11 Wm-1K-1
at 700 K

K.F. Hsu et al., Science 303,818 (2004)
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Low Dimensional Structures: 2D Superlattices

. heat source Ty
Use of transport along superlattice quantum wells

Higher a from the higher density of states

Higher electron mobility in quantum well —> higher ¢ heat sink T.

Lower Kph through additional phonon scattering from heterointerfaces

Disadvantage: higher K] with higher ¢ (but Figure of merit
layered structure can reduce this effect) o2

Overall Z and ZT should increase

L.D. Hicks and M..S. Dresselhaus, Phys. Rev. B 47, 12737 (1993)

D.Y. Paul
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2D Bi.Tes Superlattices

K
Ec

h2 2
Q@ Er2p =Ersp — 575

° Both doping and quantum well width, a
can now be used to engineer ZT —3q—>

my = 0.021 my

my = 0.081 my

m; = (0.32 my
Kph=1.5 Wm-1K-1

}la() — 0.12 mZV_IS_l
Z.T for 3D BixTe;

L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12737 (1993)
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p-Bi2Tes / Sh2Tes Superlattices

Q©  BixTes Kpp=1.05WmIK-!

Phonon mean free path
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0 3/3 nm, 1/5 nm, 2/4 nm Bi,Tes / Sb>Tes periods almost identical Kph

R. Venkatasubramanium Phys. Rev. B 61,3091 (2000)
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p-Bi2Tes / SbaTes Superlattices

p-TeAgGeSb (ref.10) Bulk Bi:Te; ZT ~ 1.0

m CeFe; 5C0( 5Sb4, (ref.10) o _
® Bi,  Sb,Te, (ref.11) Superlattice ZT = 2.6

¢ CsBiyTeg (ref.11)
A Bi-Sb (ref.5)

[ ] BizTe3/Sb2Tes SL (thlS Work)
Electrons Phonons

=383 cm?V-1s-1

¢/ =114 nm Aph=3nm

kel ~7.6 kphA ~0.5

600 800 1,000 => Phonon blocking

Temperature (K)

1 nm: S nm p-BixTe; QW / Sb:Tes barrier superlattices

Q Thermal conductivity reduced more than electrical conductivity

R. Venkatasubramanian et al., Nature 413, 597 (2001)
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Thermal Conductivity Si/Sio.7Geo.3 Superlattices

The more heterointerfaces,
the lower the thermal conductivity

o Physically: more heterointerfaces —> more phonon scattering

S. Huxtable et al., Appl. Phys. Lett. 80,1737 (2002)

D.9. Paul University
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Sio.84Geo.16 / Sio.74Geo.26 Superlattices

D.Y. Paul
School of Engineering

0 Si1-xGex is a random alloy

° No effect of superlattice
with x =0.16 and x = (.26

o Results the same as the average
alloy Ge content

0 A significant atomic mass
difference is required

S. Huxtable et al., Appl. Phys. Lett. 80,1737 (2002)
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Si/Ge Superlattice Reduced Thermal Conductivity

Sips5Geos buffer

S. Chakraborty et al., Appl. Phys. Lett. 83,4184 (2003)

D.9. Paul University
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Hi-Z n-Si/SiGe and p-B4C/B9C Superlattice

10 zzm n-Si / SipsGep.2 superlattice

Q «=-1260 xVK-!
Q 0¢=95.2001/(Qm)

Q ~=14.6WmK-!

Q@ Zzr=3.1at300K

p-B4C/BI9C superlattice with ZT = 4.0
Claim of NIST and UCSD confirming measurements

Insufficient data in paper to check if true result

15% TE module demonstrated with AT =200 "C => ZTmodule ~ 3
S. Ghamaty & N.B. Elsner, Int. Symp. Nano-Thermoelectrics, June 11-12 (2007) Osaka, Japan
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Thermal Conductivity of Silicon Nanowires

Q For bulk Si
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K ~149 Wm-1K-1
at 300 K

o For bulk Si

L 3Rph
Aph  Cu(ve)p

~ 300 nm

| | |
100 150 200 250 300
Temperature (K)
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350 o Phonon scattering at
boundaries increases
for smaller dia. wires

D.Y. Li et al. Appl. Phys. Lett. 83,2934 (2003)
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Thermal Conductivity of 1D Silicon Nanowires

__ 3Kpn
= Vapour-liquid-solid nanowires o Aph - Cy <Vt >p

m Electroless etching nanowires
~ 300 nm

©Q ¢=110mm

° Phonon scattering >>
electron scattering

100 200
Temperature (K)

Red data from nanowires with ° reduces faster than o

rough boundaries
A.I. Hochbaum et al., Nature 451, 163 (2007)
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1D Nanowires

/ 4 terminal Si nanowires

€ Substrate removed by etching

| =20 nm wide
e 10 nm wide

O

o)
=
2
o
c
&
S
=
>
o]
V3

200
A.IL. Boukai et al., Nature 451, 168 (2007) Temperature (K)
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120 nm wide; 7x10'°® cm=

o
A%

20 nm wide; 3x1 O19 cm3

1D Silicon Nanowires

0 Higher a from the higher DOS, g(E)

/

g

0\ ‘\><_

_ /o Bulk: 5;<10A1@if=/. _
/‘ ././ 20 nm wide;

I 20 —3
100 200 300~ em
Temperature (K)

20 nm wide; 7x10" cm™

A

10 nm Wlde 2><1O20 cm™3

100 200

Temperature (K)

300

D.Y. Paul
School of Engineering

o o increased by ~ 2

Q ~ reduced by factor ~150

o ZT increased by factor 600

o Thermal conductivity reduced
more than electrical conductivity

A.l. Boukai et al., Nature 451, 168 (2007)
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For Module Require Vertical Nanowires

heat absorber

° 20nm vertical Si nanowires
>> 5 um height required

n
metal
interconnects
\ o High aspect ratio nanowires
electrical

connections difficult to etch
thermoelectric

elements

nanowire
elements

o Also difficult to grow

D.Y. Paul
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OD Quantum Dots

/— Best Bulk PbTe

2

PbTe Buffer PbSeTe

-[ BaF2 Substrate 'l']-

3

S
S
et
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=
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o
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e PbTe/Te SL

A PbSeTe/PbTe QDSL

0 1 1 1 1 1 1 1 l | | 1
10'® 10'? 10%
Carrier Concentration (cm™)

0 Seebeck o.: bulk < superlattice < QD

T.C.Harmanetal., J. Elec. Mat. 29, L1 (2000)
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0D Quantum Dots

o Thermal conductivity reduced more than electrical conductivity

T.C.Harmanetal., J. Elec. Mat. 29, L1 (2000)
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SiGe Quantum Dots

O 3o 11Gelayers

Sispacer | O HPTR 11 Ge layers
t;=3,6,9,12nm v HPTR5 Ge layers
—— DMM (th.)

100 nm Si buffer

Height (nm)

G. Perot et al., Nat. Mat. 9, 491 (2010)
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Nanoparticle Engineering

Advantages:
o Potentially cheap, mass manufacturable technology

o Periodic structures not required to reduce thermal conductivity

o In SiGe material, particles below 50 nm demonstrate improved ZT

Disadvantages:

0 Many orders of magnitude change in ZT for small
change in density (few %)

0 Technology immature and process dependent

School of Engineering
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Nanoparticle / Quantum Dot Materials

Ball milled bulk alloy Hot pressed material with ~10 nm

nanoparticles

X.W. Wang et al. Appl. Phys. Lett. 93, 193121 (2008)
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X.W. Wang et al. Appl. Phys. Lett.
93,193121 (2008)
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Maximum Output Power
Qincident T Qrefiected

hot side electrical insulator, T

_|metal meta
n

l

cold side electrical insulator, T

A = module leg area
L = module leg length

N = number of modules

o F = fabrication factor = perfect system — Rcontact — Rseries — LLOSt heat

0 Practical systems: both electrical and thermal impedance
matching is required

Pmax = s FN2AT202%0

D.M. Rowe (Ed.), ‘Thermoelectrics Handbook: Macro to Nano’ CRC Taylor and Francis (2006)

D.J. paul A University
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Maximum Power Examples

o = 400 pVK-1, 6 = 83,000 (1/Q-m) Dense microfabricated

300 K bulk SiGe , module
. © Micropelt N =2500
bulk B12T33 L=10 pm

poly-Si le=1pm
A=10x 10 ygm?
F=0.2

bulk Bi>Tes experiment
Nat. Mat. 2, 528 (2003)
(scaled from L =20 — 10 zm)

Pmax = s FN2AT?a?0

N.B. The thermal conductivity must also be considered for AT mnax!

D.9. Paul A University
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Generate Renewable Energy Efficiently using
Nanofabricated Silicon (GREEN Silicon)

D.Y. Paul — Co-ordinator GREEN Si
EC FP?7 YCT FET
“2Z2eropPowerICT” No.: 257750

D.J. Paul, J.M.R. Weaver, P. Dobson & J. Watling
University of Glasgow, U.K.

G. Isella, D. Chrastina & H. von Kénel
L-NESS, Politecnico de Milano, Como, Italy

J. Stangl, T. Fromherz & G. Bauer

University of Linz, Austria

E. Miiller
ETH Ziirich, Switzerland




GREEN Silicon Approach

Low dimension
technology

source

superlattice quantum dot nanowires

——

Generator

EC FP7 ICT FET
“2Z2eropPowerICT” No.: 257750
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Summary

Waste heat is everywhere —> enormous number of applications

Low dimensional structures are yet to demonstrate the predicted
increases in o due to DOS

Reducing Rph faster than ¢ has been the most successful approach
to improving ZT to date

Heterointerface scattering of phonons has been successful in reducing <

o TE materials and generators are not optimised —> there is plenty of
room for innovation
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Further Reading

O D.M. Rowe (Ed.), ‘“Thermoelectrics Handbook: Macro to Nano”’
CRC Taylor and Francis (2006) ISBN 0-8494-2264-2

O G.S. Nolas, J. Sharp and H.J. Goldsmid ‘“Thermoelectrics: Basic Principles
and New Materials Development (2001) ISBN 3-540-41245-X

O M.S. Dresselhaus et al. “New directions for low-dimensional
thermoelectric materials” Adv. Mat. 19, 1043 (2007)
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