Thermoelectric Energy Harvesting

Douglas J. Paul

School of Engineering University of Glasgow, U.K.

- Established in 1451
- 6 Nobel Laureates
- 16,500 undergraduates, 5,000 graduates and 5,000 adult students
 - £130M research income pa

Neo-gothic buildings by Gilbert Scott

Famous Glasgow Scholars

William Thomson (Lord Kelvin)

James Watt

William John Macquorn Rankine

Rev Robert Stirling

Rev John Kerr

Joseph Black

John Logie Baird

Adam Smith

Vistec VB6 & EBPG5

E-beam lithography

Süss MA6 optical & nanoimprint lithography

750m² cleanroom - pseudo-industrial operation

18 technicians + 5 research technologists (PhD level process engineers)

Large number of process modules

Processes include: Si/SiGe/Ge, III-V, II-VI, piezoelectric MMICs, optoelectronics, metamaterials, MEMS

Commercial access through KNT

3 Metal dep tools 4 SEMs: Hitachi S4700

Veeco: AFMs

- In School of Engineering
- £53M active research grant portfolio (£14M pa, industry ~£1M)
 - 2nd highest cited E&EE Department in UK after Cambridge

World Bests:

Smallest electron-beam lithography pattern – 3 nm

Best layer-to-layer alignment accuracy (0.42 nm rms)

Smallest diamond transistor (50 nm gate length)

Lowest loss silicon optical waveguide (< 0.9 dB/cm)

Fastest mode locked laser (2.1 THz)

Highest Q silicon nanowire cavity (Q = 177,000)

JWNC@Glasgow Nanofabrication

Thermoelectrics

- 0
- History: Seebeck effect 1822
- heat -> electric current
- 0
- Peltier (1834): current -> cooling
- Physics: Thomson (Lord Kelvin) 1850s

Ioffe: physics (1950s), first devices 1950s - 1960s, commercial modules 1960s

Present applications:

0

Peltier coolers (telecoms lasers, rf / mm-wave electronics, beer! etc...)

Thermoelectric generators – some industrial energy harvesting

As renewable energy interest increases, renewed interest in thermoelectrics

Why Use Thermoelectrics?

No moving parts -> no maintenance

Peltier Coolers: fast feedback control mechanisms $\rightarrow \Delta T < 0.1$ °C

Scalable to the nanoscale -> physics still works (some enhancements) but power < area

Most losses result in heat

- Most heat sources are "static"
- Waste heat from many systems could be harvested

home, industry, background

Background Physics

Fourier thermal transport

$$\mathbf{Q} = -\kappa \mathbf{A} \nabla \mathbf{T}$$

- Q = heat (power i.e energy / time)
- E_F = chemical potential
- V = voltage
- A = area
- q = electron charge
- **g**(**E**) = **density** of states
- **k**_B = Boltzmann's constant

Joule heating

$$\mathbf{Q} = \mathbf{I^2}\mathbf{R}$$

- **R** = resistance
- I = current (J = I/A)
- κ = thermal conductivity
- $\sigma = \text{electrical conductivity}$
- α = Seebeck coefficient
- **f**(**E**) = Fermi function
- $\mu(\mathbf{E}) = \mathbf{mobility}$

 \bigcirc

Peltier coefficient is the energy carried by each electron per unit charge & time

The Peltier Coefficient

Full derivation uses relaxation time approximation & Boltzmann equation

)
$$\Pi = -\frac{1}{q} \int (\mathbf{E} - \mathbf{E}_{\mathbf{F}}) \frac{\sigma(\mathbf{E})}{\sigma} d\mathbf{E}$$

)
$$\sigma = \int \sigma(\mathbf{E}) d\mathbf{E} = \mathbf{q} \int \mathbf{g}(\mathbf{E}) \mu(\mathbf{E}) \mathbf{f}(\mathbf{E}) [\mathbf{1} - \mathbf{f}(\mathbf{E})] d\mathbf{E}$$

This derivation works well for high temperatures (> 100 K)

At low temperatures phonon drag effects must be added

see H. Fritzsche, Solid State Comm. 9, 1813 (1971)

The Seebeck Effect

Measuring Seebeck Coefficient

The Seebeck Coefficient

Full derivation uses relaxation time approximation, Boltzmann equation

•
$$\alpha = -\frac{\mathbf{k}_{\mathbf{B}}}{\mathbf{q}} \int (\mathbf{E} - \mathbf{E}_{\mathbf{F}}) \frac{\sigma(\mathbf{E})}{\sigma} d\mathbf{E}$$

 $\sigma = \int \sigma(\mathbf{E}) d\mathbf{E} = \mathbf{q} \int \mathbf{g}(\mathbf{E}) \mu(\mathbf{E}) \mathbf{f}(\mathbf{E}) [\mathbf{1} - \mathbf{f}(\mathbf{E})] d\mathbf{E}$

For electrons in the conduction band, Ec of a semiconductor

$$\bigcirc \quad \alpha = -\frac{\mathbf{k}_{\mathbf{B}}}{\mathbf{q}} \left[\frac{\mathbf{E}_{\mathbf{c}} - \mathbf{E}_{\mathbf{F}}}{\mathbf{k}_{\mathbf{B}} \mathbf{T}} + \frac{\int_{\mathbf{0}}^{\infty} \frac{(\mathbf{E} - \mathbf{E}_{\mathbf{c}})}{\mathbf{k}_{\mathbf{B}} \mathbf{T}} \sigma(\mathbf{E}) d\mathbf{E}}{\int_{\mathbf{0}}^{\infty} \sigma(\mathbf{E}) d\mathbf{E}} \right] \quad \text{for } \mathbf{E} > \mathbf{E}_{\mathbf{c}}$$

see H. Fritzsche, Solid State Comm. 9, 1813 (1971)

The Seebeck Coefficient for Metals

$$\mathbf{f}(\mathbf{1}-\mathbf{f}) = -k_{\mathbf{B}}T \tfrac{d\mathbf{f}}{d\mathbf{E}}$$

Expand $\mathbf{g}(\mathbf{E})\mu(\mathbf{E})$ in Taylor's series at $\mathbf{E} = \mathbf{E}_{\mathbf{F}}$

$$\alpha = -\frac{\pi^2}{3} \frac{\mathbf{k_B}}{\mathbf{q}} \mathbf{k_B} \mathbf{T} \begin{bmatrix} \frac{\mathbf{d} \ln(\mu \mathbf{g})}{\mathbf{d} \mathbf{E}} \end{bmatrix} \mathbf{E_F}$$
 (Mott's formula)
Mott and Jones, 1958

i.e. Seebeck coefficient depends on the asymmetry of the current contributions above and below $E_{\rm F}$

Using the energy-independent scattering approximation:

$$\alpha = -\frac{8\pi^2 k_B^2}{3eh^2} m^* T\left(\frac{\pi}{3n}\right)^{\frac{2}{3}}$$

n=carrier density

M. Cutler et al., Phys. Rev. 133, A1143 (1964)

Semiconductor Example: SiGe Alloys

J.P. Dismukes et al., J. Appl. Phys. 35, 2899 (1964)

 α decreases for higher n

$$\alpha = \frac{8\pi^2 k_{\rm B}^2}{3eh^2} m^* T\left(\frac{\pi}{3n}\right)^{\frac{2}{3}}$$

The Kelvin Relationships

Derived using irreversible thermodynamics

$$\beta = \mathbf{T} \frac{\mathbf{d}\alpha}{\mathbf{d}\mathbf{T}}$$

These relationships hold for all materials

Seebeck, α is easy to measure experimentally

Therefore measure α to obtain Π and eta

Conversion Efficiency

 $\eta = \frac{\text{power supplied to load}}{\text{heat absorbed at hot junction}}$

Power to load (Joule heating) = I^2R_L

Peltier heat $= \Pi I = \alpha I T_h$

 $I = \frac{\alpha(T_h - T_c)}{R + R_L}$ (Ohms Law)

Heat withdrawn from hot junction = $\kappa \mathbf{A} \left(\mathbf{T_h} - \mathbf{T_c} \right) - \frac{1}{2} \mathbf{I_2^2 R}$

 $\mathbf{R} = \mathbf{R}_{n} + \mathbf{R}_{p}$

NB half Joule heat returned to hot junction

Thermoelectric Power Generating Efficiency

Maximising ZT for an Unbalanced Couple

We need good ZT for both n- and p-type semiconductors

D.J. Paul School of Engineering

 $\sqrt{\frac{\sigma_{\mathbf{n}}\kappa_{\mathbf{n}}}{\sigma_{\mathbf{p}}\kappa_{\mathbf{p}}}}$

Maximum Temperature Drop

As the system has thermal conductivity κ a maximum ΔT which can be sustained across a module is limited due to heat transport

0

The efficiency cannot be increased indefinitely by increasing $T_{\rm h}$

The thermal conductivity also limits maximum ΔT in Peltier coolers

heat source T_h

Higher ΔT_{max} requires better Z materials

Thermodynamic Efficiency: The Competition

C.B. Vining, Nature Mat. 8, 83 (2009)

Power Generation From Macro to Micro

C.B. Vining, Nature Mat. 8, 83 (2009)

Thermal Conductivity of Bulk Materials

Both the lattice and electron current can contribute to heat transfer

thermal conductivity = electron contribution + phonon contribution = (electrical conductivity) + (lattice contributions) $\kappa = \kappa_{el} + \kappa_{ph}$

Good thermoelectric materials should ideally have $\kappa_{el} \ll \kappa_{ph}$

i.e. electrical and thermal conductivities are largely decoupled

Phonons: Lattice Vibration Heat Transfer

D.J. Paul School of Engineering

Wiedemann-Franz Law

Empirical law from experimental observation that $\frac{\kappa}{\sigma T}$ = constant for metals

Drude model's great success was an explanation of Wiedemann-Franz

Drude model assumes bulk of thermal transport by conduction electrons in metals

Success fortuitous: two factors of 100 cancel to produce the empirical result from the Drude theory

Incorrect assumption: classical gas laws cannot be applied to electron gas

Wiedemann-Franz Law for Metals

••••

In metals, the thermal conductivity is dominated by κ_{el}

$$\frac{\sigma \mathbf{T}}{\kappa} = \frac{\mathbf{3}}{\pi^2} \left(\frac{\mathbf{q}}{\mathbf{k}_{\mathrm{B}}}\right)^2 = \frac{1}{L}$$

$$\mathbf{ZT} = \frac{3}{\pi^2} \left(\frac{\mathbf{q}\alpha}{\mathbf{k}_B} \right)^2 = 4.09 \text{ x } 10^7 \alpha^2$$

L = Lorentz number $= 2.45 \times 10^{-8} \text{ W-}\Omega \text{K}^{-2}$

Exceptions:

certain alloys where small κ_{el} results in significant κ_{ph} contribution

certain low dimensional structures where $\kappa_{\mathbf{ph}}$ can dominate

Bi₂Te₃ ZT Optimisation Through Doping

Optimising ZT in Bulk by Reducing κ_{ph}

Example for Bi_2Te_3 where κ_{ph} is theoretically reduced by x 4

Polycrystalline or defects can be used to reduce κ_{ph} faster than σ

$$\mathbf{ZT} = \frac{\alpha^2}{\mathbf{L}(\mathbf{1} + \frac{\kappa_{\mathbf{ph}}}{\kappa_{\mathbf{el}}})}$$

"Phonon glasses" search to improve ZT

G.J. Snyder et al., Nature Mat. 7, 105 (2008)

Bulk Thermoelectric Materials Performance

Bulk n-Bi₂Te₃ and p-Sb₂Te₃ used in most commercial Peltier coolers

Bulk Si_{1-x}Ge_x (x~0.2 to 0.3) used for high temperature satellite applications

Thermoelectric Generators / Peltier Coolers

Bulk n-Bi₂Te₃ and p-Sb₂Te₃ devices

Micropelt: Microfabricated Bi₂Te₃ Technology

http://www.micropelt.com/

Micropelt Peltier Coolers for Lasers

Microfabricated Bi₂Te₃ thermoelectric devices

http://www.micropelt.com/

Micropelt Bi2Te3 Thermoelectric Energy Harvester

http://www.micropelt.com/

Present Thermoelectric Energy Harvesting

VW and BMW announced TE on exhaust in 2008: 24 Bi₂Te₃ modules

600 W under motorway driving -> 30% of car's electrical requirement

NASA Radioisotope Thermoelectric Generator

Radioisotope heater -> thermoelectric generator -> electricity

Voyager – Pu²³⁸

470 W @ 30 V on launch, after 33 years power = $470 \times 2^{-\frac{33}{87}}$ = 361 W

Main Strategies for Optimising ZT

Reducing thermal conductivity faster than electrical conductivity:

e.g. skutterudite structure: filling voids with heavy atoms

Low-dimensional structures:

Increase α through enhanced DOS $(\alpha = -\frac{\pi^2}{3} \frac{\mathbf{k}_B}{\mathbf{q}} \mathbf{k}_B \mathbf{T} \left| \frac{d \ln(\mu \mathbf{g})}{d\mathbf{E}} \right| \mathbf{E}_F)$

Make α and σ almost independent

Reduce κ through numerous interfaces to increase phonon scattering

Energy filtering: $\mathbf{\alpha} = -\frac{\mathbf{k}_{\mathbf{B}}}{\mathbf{q}} \left[\frac{\mathbf{E}_{\mathbf{c}} - \mathbf{E}_{\mathbf{F}}}{\mathbf{k}_{\mathbf{B}} \mathbf{T}} + \frac{\int_{\mathbf{0}}^{\infty} \frac{(\mathbf{E} - \mathbf{E}_{\mathbf{c}})}{\mathbf{k}_{\mathbf{B}} \mathbf{T}} \sigma(\mathbf{E}) d\mathbf{E}}{\int_{\mathbf{0}}^{\infty} \sigma(\mathbf{E}) d\mathbf{E}} \right] \quad Y.I. Ravich et al., Phys. Stat. Sol. (b)$ 43, 453 (1971)

Carrier Pocket Engineering – strain & band structure engineering

Length Scales: Mean Free Paths

School of Engineering

D.J. Paul School of Engineering

Electron Crystal – Phonon Glass Materials

Principle: trying to copy "High T_c" superconductor structures

Heavy ion / atom layers for phonon scattering

High mobility electron layers for high electrical conductivity

Ca_xYb_{1-x}Zn₂Sb₂

Only small improvements to ZT observed

G.J. Snyder et al., Nat. Mat. 7, 105 (2008)

Low Dimensional Structures: 2D Superlattices

 \bigcirc

Use of transport along superlattice quantum wells

- Higher α from the higher density of states
- Higher electron mobility in quantum well \rightarrow higher σ
- Lower κ_{ph} through additional phonon scattering from heterointerfaces

- Disadvantage: higher κ_{el} with higher σ (but layered structure can reduce this effect)
 - Overall Z and ZT should increase

Figure of merit
$$\mathbf{ZT} = \frac{\alpha^2 \sigma}{\kappa} \mathbf{T}$$

L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12737 (1993)

p-Bi₂Te₃ / Sb₂Te₃ Superlattices

 \bigcirc

Bi₂Te₃ $\kappa_{ph} = 1.05 \text{ Wm}^{-1}\text{K}^{-1}$

R. Venkatasubramanium Phys. Rev. B 61, 3091 (2000)

p-Bi₂Te₃ / Sb₂Te₃ Superlattices

Thermal conductivity reduced more than electrical conductivity

R. Venkatasubramanian et al., Nature 413, 597 (2001)

Thermal Conductivity Si/Si_{0.7}Ge_{0.3} Superlattices

S. Huxtable et al., Appl. Phys. Lett. 80, 1737 (2002)

S. Huxtable et al., Appl. Phys. Lett. 80, 1737 (2002)

Si/Ge Superlattice Reduced Thermal Conductivity

S. Chakraborty et al., Appl. Phys. Lett. 83, 4184 (2003)

Claim of NIST and UCSD confirming measurements

Insufficient data in paper to check if true result

15% TE module demonstrated with $\Delta T = 200$ °C => $ZT_{module} \sim 3$

S. Ghamaty & N.B. Elsner, Int. Symp. Nano-Thermoelectrics, June 11-12 (2007) Osaka, Japan

Thermal Conductivity of Silicon Nanowires

D.Y. Li et al. Appl. Phys. Lett. 83, 2934 (2003)

A.I. Boukai et al., Nature 451, 168 (2007)

D.J. Paul School of Engineering

D.J. Paul School of Engineering

For Module Require Vertical Nanowires

heat absorber **20nm vertical Si nanowires** $>> 5 \mu m$ height required metal interconnects **High aspect ratio nanowires** electrical heat absorbe difficult to etch connections thermoelectric elements р nanowire n elements Also difficult to grow heat rejector

D.J. Paul School of Engineering

OD Quantum Dots

C

Thermal conductivity reduced more than electrical conductivity

T.C. Harman et al., J. Elec. Mat. 29, L1 (2000)

Nanoparticle Engineering

Advantages:

Potentially cheap, mass manufacturable technology

Periodic structures not required to reduce thermal conductivity

In SiGe material, particles below 50 nm demonstrate improved ZT

Disadvantages:

Many orders of magnitude change in ZT for small change in density (few %)

Technology immature and process dependent

Nanoparticle / Quantum Dot Materials

Ball milled bulk alloy

Hot pressed material with ~ 10 nm nanoparticles

X.W. Wang et al. Appl. Phys. Lett. 93, 193121 (2008)

D.J. Paul School of Engineering

Maximum Output Power

D.M. Rowe (Ed.), 'Thermoelectrics Handbook: Macro to Nano' CRC Taylor and Francis (2006)

N.B. The thermal conductivity must also be considered for ΔT_{max} !

Generate Renewable Energy Efficiently using Nanofabricated Silicon (GREEN Silicon)

D.J. Paul, J.M.R. Weaver, P. Dobson & J. Watling University of Glasgow, U.K.

G. Isella, D. Chrastina & H. von Känel L-NESS, Politecnico de Milano, Como, Italy

J. Stangl, T. Fromherz & G. Bauer University of Linz, Austria

E. Müller

ETH Zürich, Switzerland

ETH Zürich – Info für Studieninteressierte

D.J. Paul – Co-ordinator GREEN Si EC 3P7 ICT 3ET "2ZeroPowerICT" No.: 257750

D.J. Paul – Co-ordinator GREEN Si EC 3P7 JCT 3ET "2ZeroPowerICT" No.: 257750

Summary

Waste heat is everywhere -> enormous number of applications

Low dimensional structures are yet to demonstrate the predicted increases in α due to DOS

Reducing κ_{ph} faster than σ has been the most successful approach to improving ZT to date

Heterointerface scattering of phonons has been successful in reducing ${\boldsymbol{\kappa}}$

TE materials and generators are not optimised -> there is plenty of room for innovation

Further Reading

D.M. Rowe (Ed.), "Thermoelectrics Handbook: Macro to Nano" CRC Taylor and Francis (2006) ISBN 0-8494-2264-2

G.S. Nolas, J. Sharp and H.J. Goldsmid "Thermoelectrics: Basic Principles and New Materials Development (2001) ISBN 3-540-41245-X

M.S. Dresselhaus et al. "New directions for low-dimensional thermoelectric materials" Adv. Mat. 19, 1043 (2007)

