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Ambient energy harvesting has been in recent years the recurring object of a number of research efforts

aimed at providing an autonomous solution to the powering of small-scale electronic mobile devices.

Among the different solutions, vibration energy harvesting has played a major role due to the almost

universal presence of mechanical vibrations. Here we propose a new method based on the exploitation of

the dynamical features of stochastic nonlinear oscillators. Such a method is shown to outperform standard

linear oscillators and to overcome some of the most severe limitations of present approaches. We

demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting

from ambient vibration.
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The efficient powering of small-scale electronic mobile
devices [1–3] is still an open problem. Old-style solutions,
i.e., disposable batteries, cannot always be employed due
to a number of reasons, chief among others the practical
impossibility of replacement once exhausted. For such
reasons, a new approach based on the exploitation of
energy harvested where and when available has attracted
considerable attention. Specifically, vibration energy har-
vesting and ambient light exploitation are believed to con-
stitute a potentially viable solution. Ambient vibrations
come in a vast variety of forms from sources as diverse
as wind induced movements, seismic noise, and car’s
motion. Present working solutions for vibration-to-
electricity [4–7] conversion are based on linear, i.e., reso-
nant, mechanical oscillators that convert kinetic energy via
capacitive, inductive, or piezoelectric methods [8–10] by
tuning their resonant frequency in the spectral region
where most of the energy is available. However, in the
vast majority of cases, the ambient vibrations have their
energy distributed over a wide spectrum of frequencies,
with significant predominance of low frequency compo-
nents, and frequency tuning is not always possible due to
geometrical or dynamical constraints [10,11].

To overcome these difficulties, we propose a different
approach based on the exploitation of the properties of
nonlinear (i.e., nonresonant) oscillators. Specifically, we
demonstrate that a bistable oscillator, under proper oper-
ating conditions [12] can provide better performances
compared to a linear oscillator in terms of the energy
extracted from a generic wide spectrum vibration. In fact,
a nonlinear oscillator, as the one that we discuss here, by
default can present a wide spectral response (much wider
than a linear or resonant one) and can be operated in such a
way that its frequency response matches more closely what
is available in the environment. In this regard, we point out
that we are dealing here with open systems far from
equilibrium, and the energy conversion mechanism is af-

fected by both the spectral distribution and by the intensity
of the vibrational energy available and is directly con-
nected to the amplitude of the motion of the oscillating
elements. Moreover, we note that the dynamical features
discussed here are not limited to the sole piezoelectric
energy conversion but can be applied also to other prin-
ciples, e.g., capacitive and inductive.
For the sake of demonstration, we realized a toy-model

oscillator made by a piezoelectric inverted pendulum
(Fig. 1) where on top of the pendulummass a small magnet
(tip magnet) has been added. The effect of ground vibration
force is reproduced by applying a properly designed mag-
netic excitation on two small magnets attached near the
base of the pendulum. Under the action of the excitation,
the pendulum oscillates, alternatively bending the piezo-
electric beam and thus generating a measurable voltage
signal. The dynamics of the inverted pendulum tip can be
controlled with the introduction of an external magnet
conveniently placed at a certain distance � and with po-
larities opposed to those of the tip magnet. The external
magnet introduces a force dependent from � that opposes
the elastic restoring force of the bended beam. As a result,
the inverted pendulum dynamics can show two different
types of behaviors as a function of the distance �.
Specifically, when the external magnet is far away, the
inverted pendulum behaves like a linear oscillator whose
dynamics is resonant with a resonance frequency deter-
mined by the system parameters. This situation accounts
well for the usual operating condition of traditional piezo-
electric vibration-to-electric energy converters [6]. On the
other hand, when � is small enough, two new equilibrium
positions appear. The random vibration makes the pendu-
lum swing in a more complex way with small oscillations
around each of the two equilibrium positions and large
excursions from one to the other. In order to quantify the
energy produced by the piezoelectric oscillator, we com-
puted the power dissipated in a purely resistive load, by
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measuring the voltage drop V over a resistive load RL [7],
under the influence of a random vibration with Gaussian
distribution (with zero mean and standard deviation �) and
exponential autocorrelation function (with correlation time
�). In Fig. 2 (upper panel), we show the average electrical
power hV2i=RL as a function of� for three different values
of the noise standard deviation �. In all the cases, the
power increases rapidly from the linear case (large �) up
to a maximum value and then decreases when the magnets
become closer and closer. A qualitatively similar behavior
is observed (Fig. 2, lower panel) if we plot the pendulum
rms position xrms, as a function of �.

In order to quantitatively account for the experiments,
we developed a dynamical description of the inverted
pendulum based on the following equation of motion:

m €x ¼ dUðxÞ
dx

� � _x� KvVðtÞ þ ��ðtÞ: (1)

The first term on the right-hand side accounts for the
conservative force, where UðxÞ is the potential energy of
the pendulum [13] shown in Fig. 3.

UðxÞ ¼ Kx2 þ ðax2 þ b�2Þ�3=2 þ c�2; (2)

with K, a, b, and c representing constants related to the
physical parameters of the pendulum [14,15] (see Fig. 1):

K ¼ Keff=2 with Keff effective elastic constant; a ¼
d2ð�0M

2=2�dÞ�2=3 with �0 the permeability constant,
M ¼ 0:051 Am2, the effective magnetic moment, and d ¼
2:97 a geometrical parameter related to the distance be-
tween the measurement point and the pendulum length;
b ¼ a=d2; and c ¼ K=d2.
The second term on the right-hand side of (1) �� _x

accounts for the energy dissipation due to the bending,
and�KvVðtÞ accounts for energy transferred to the electric

FIG. 2 (color online). Piezoelectric oscillator mean electric
power (upper panel) and position xrms (lower panel) as a function
of � for three different values of the noise standard deviation �.
The symbols correspond to experimental values measured from
the apparatus in Fig. 1. The continuous curves have been
obtained from the numerical solution of the stochastic differen-
tial equation (1). Both in the experiment and in the numerical
solution, the stochastic force has the same statistical properties
with correlation time � ¼ 0:1 s. Every data point is obtained
from averaging the rms values of ten time series sampled at a
frequency of 1 kHz for 200 s. The rms is computed after zero
averaging the time series. The expected relative error in the
numerical solution is within 10%.

FIG. 1 (color online). Schematic of the experimental appara-
tus. The inverted pendulum is a four-layer piezoelectric beam
made by lead zirconate titanate (PSI-5A4E) 60 mm of free
length, clamped at one end. The piezoelectric beam has a width
of 5 mm and a thickness of 0.86 mm. The pendulum mass is a
steel cylinder 140.0 mm long and with diameter of 4.0 mm, with
three magnets attached (each magnetic dipole moment is
0:051 Am2). The inverted pendulum resonance frequency (in
the linear regime) is 6.67 Hz. The displacement x is measured via
an optical readout. The voltage signal from the piezo is measured
through a load resistor RL placed in parallel. The actual magni-
tude of the standard deviation of the vibrational force applied in
the three cases is � ¼ 3� 10�4 N, 6� 10�4 N, 12� 10�4 N.
The load resistance is R ¼ RL ¼ 100 M� and the piezo capaci-
tance C ¼ 112nF. The effective mass is m ¼ 0:0155 kg. The
damping constant is � ¼ 0:016 Hz.
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load RL with coupling equation:

_VðtÞ ¼ Kc _x� VðtÞ
RLC

: (3)

C and Kc are, respectively, the capacitance and the
coupling constant of the piezoelectric sample. Finally,
��ðtÞ accounts for the vibration force that drives the pen-
dulum. �ðtÞ represents a stochastic process with the same
statistical properties of the magnetic excitation. In Fig. 2,
we plot with a continuous line the computed power
hV2i=RL (upper panel) and the rms value of xðtÞ (lower
panel) as obtained by the numerical solution of the equa-
tion of motion. All the parameters have been measured
from the experimental apparatus and introduced into the
equation. As it is apparent, the agreement between the
experimental data and the model is rather good. In Fig. 2,
we can easily identify three different regimes: (1) Large�,

i.e., � � �c ¼ �=
ffiffiffi

b
p

with � ¼ ð3a=2KÞ1=5. The dynam-
ics is characterized by quasilinear oscillations around the
single minimum located at zero displacement, in corre-
spondence with the vertical position of the pendulum. This
condition accounts for the usual performances of a linear
piezoelectric generator. (2) Small � (� � �c), the poten-
tial energy is bistable with a very pronounced barrier
between the two wells. In this condition and for a given
amount of noise, the pendulum swing is almost exclusively
confined within one well and the dynamics is characterized
once again by quasilinear oscillations around the minimum
of the confining well. (3) In between there is a range of
distances � where the xrms (and the Vrms as well) reaches a
maximum value. In this condition the pendulum dynamics
is highly nonlinear and the swing reaches its largest am-
plitude with noise assisted jumps between the two wells.
As it is well evident in Fig. 2, the maximum values of the

output power exceeds by a factor that ranges between 4 and
6 the value obtainable when the magnet is far away. This
indicates a potential gain for power harvesting between
400% and 600% compared to the standard linear
oscillators.
Two other important features are apparent: (a) the maxi-

mum position shifts toward larger � when the noise inten-
sity increases. (b) In the low � regime, the rms reaches a
plateau that is smaller than the plateau reached by the rms
in the large � regime. Both features can be explained as
follows. When � � �c, the potential UðxÞ shows a single
minimum with librational frequency given by !2

0 ¼
U00ð0Þ=m ¼ ð2k� 3ab�5=2=�5Þ=m. The xrms value here
can be estimated in the linear oscillator approximation
[16] as proportional to �=!0. On decreasing �, !0 de-
creases and thus the xrms value increases. When � ¼ �c

the potential develops two distinct minima located at x� ¼
�ðð�2 � b�2Þ=aÞ1=2.
The pendulum swings now between the two minima and

the rms increases proportional to x�. With decreasing �,
the potential barrier height �U grows proportional to ��3

and becomes so large that the jump probability becomes
negligible. The pendulum swing is thus permanently con-
fined within one well. Such a trapping condition happens at
smaller values of � (i.e., larger barrier) for larger noise.
This explains the observed shift of the maximum position
toward smaller � as observed in (a). Inside one well the
dynamics is almost linear with small oscillations around
the potential local minima (xþ or x�) and xrms / �=!�
with !� ¼ U00ðx�Þ=m. Being !� >!0 it follows
rms�!0 < rms�!1, as observed in (b). The increase in
the rms value observed for the inverted pendulum is not a
peculiar feature of this specific system or potential.
Instead, it appears to be quite a general feature of bistable
dynamical systems. To support this statement, we focussed
our attention on the dynamics of the so-called Duffing
oscillator [17], extensively studied in the presence of noise
both in the classical [18] and in the quantum domain [19].
The potential UqðxÞ ¼ �a=2x2 þ b=4x4 is bistable when

a > 0with x� ¼ � ffiffiffiffiffiffiffiffiffi

a=b
p

and�Uq ¼ a2=4b. The equation

of motion,

m €x ¼ dUqðxÞ
dx

� � _xþ �q�ðtÞ; (4)

is in analogy with the pendulum case. The role of � is
played here by the parameter a. The behavior of xrms is
qualitatively similar to the one shown by the pendulum,
i.e., three distinct regimes can be identified: (1) a � 0. The
potential is monostable and the dynamics is characterized
by quasilinear oscillations around the minimum located at
x ¼ 0. (2) a � 0. The potential is bistable with a very
pronounced barrier between the two wells. The dynamics
is mainly trapped inside one minimum. (3) In between
there is a range of values where xrms reaches a maximum
and the dynamics is characterized by frequent jumps be-
tween the two wells.

FIG. 3. Inverted pendulum potential function UðxÞ. Five differ-
ent plots of the potential function (2) corresponding to five
different values of the parameter �, representing the distance
between the external magnet and the tip magnet (see Fig. 1) are
shown (vertical scale in J). On decreasing � the potential
changes from monostable to bistable.
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In Fig. 4, we present the xrms as a function of a and the
noise variance �2. The contour plot in the figure inset
shows the evolution of the maximum xrms. The solid line
is a theoretical prediction obtained with the following
argument. The rms evolution in regime (3) can be roughly
modeled as governed by to two main contributions: (i) the
raising, mainly due to the growth of the separation between
the two minima at x�; (ii) the drop, mainly due to the
decrease in the jump probability measured by the crossing
probability, proportional [20] to expð��Uq=�

2�Þ, caused
by the increase of the potential barrier height �Uq. For the

sake of identifying the dependence of the maximum posi-
tion, we computed the root of the equation:

dxrms

da
¼ d

da
ðxþe�ð�Uq=�

2�ÞÞ ¼ 0 (5)

obtaining that xrms reaches a maximum when a ¼ amax ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

b�2�
p

for a given noise intensity.
Finally, we notice that the dynamical features discussed

here are not limited to the sole piezoelectric energy con-
version but can be applied also to other principles, e.g.,
capacitive and inductive. They can be applied also to micro
[21] and nanomechanical resonators [8,22] where noise
driven dynamics are considered as a promising option
[23]. In any case no conversion of equilibrium thermal
energy is implied.
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FIG. 4 (color). Root mean squared (rms) values of the Duffing
oscillator position xrms as a function of a and the noise variance
�2. The values plotted here have been obtained from the nu-
merical solution of (4). rms is computed after zero averaging the
xðtÞ. Inset: contour plot of xrms. The continuous line represents
the theoretical prediction for the maximum: i.e. xrms has a

maximum when a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

b�2�
p

. The expected relative error in
the numerical solution is within 10%.
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