Nonlinear Energy Harvesting

Helios Vocca

NiPS Laboratory, Dipartimento di Fisica

Università degli Studi di Perugia, Italy

&

Wisepower

WISEP WER

WISEP

N.I.P.S Laboratory Noise in Physical Systems

Energy harvesting basic ideas

Power Spectrum

For a deterministic signal x(t), the spectrum is well defined: If X(f) represents its Fourier transform, i.e., if

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{-i2\pi f} dt$$

then $|X(f)|^2$ represents its energy spectrum. This follows from Parseval's theorem since the signal energy is given by

Noise in Physical System

Noise spectrum examples

You'll see some noise spectrum in our database... (See Neri's presentation at the workshop the 7th)

Linear system

Micro energy harvesting system...

Wish list for the perfect vibration harvester

- 1) Capable of harvesting energy on a broad-band
- 2) No need for frequency tuning
- 3) Capable of harvesting energy at low frequency

- 1) Non-resonant system
- 2) "Transfer function" with wide frequency resp.
- 3) Low frequency operated

NON-Linear mechanical oscillators

- 1) Non-resonant system
- 2) "Transfer function" with wide frequency resp.
- 3) Low frequency operated

WISEP

WER

Statistics

• "1D" Statistics: (2nd Order Cumulants, 1st Order Spectra)

- Correlation:
$$C_{xy}(t) = \int_{-\infty}^{\infty} x(\tau) y(t+\tau) d\tau \iff X(f) Y^*(f) = S_{xy}(f)$$

- Power Spectral Density: $C_{2x}(t) \Leftrightarrow X(f) X^*(f) = S_{2x}(f)$

- Coherence:
$$C_{xy}(f) = \frac{S_{xy}(f)}{\sqrt{S_{2x}(f) S_{2y}(f)}}$$

• Tells us power and phase coherence at a given frequency

WISE

Statistics

• "2D" Statistics: (3rd Order Cumulants, 2nd Order Spectra)

- Bicumulant:

Noise in Physical System

$$C_{xyz}(t,t') = \int_{-\infty}^{\infty} x(\tau) y(t+\tau) z(t'+\tau) d\tau \iff X(f_1) Y(f_2) Z^*(f_1+f_2) = S_{xyz}(f_1,f_2)$$

- Bispectral Density: $C_{3x}(t) \Leftrightarrow X(f_1) X(f_2) X^*(f_1 + f_2) = S_{3x}(f_1, f_2)$ $S_{3x}(f_1, f_2) = \int_{-\infty}^{+\infty+\infty} C_{3x}(m, n) e^{2\pi i (f_1 m + f_2 n)} dm dn$

- Bicoherence:
$$C_{xyz}(f) = \frac{S_{xyz}(f_1, f_2)}{\sqrt{S_{xx}(f_1)}\sqrt{S_{yy}(f_2)}\sqrt{S_{zz}(f_1 + f_2)}}$$

• Tells us power and phase coherence at a coupled frequency

Statistics

The Spectrogram (STFT square modulus):

$$S_{x}(t,v) = \left| \int_{-\infty}^{+\infty} x(\tau) h^{*}(\tau-t) e^{-i2\pi v\tau} d\tau \right|^{2}$$

Represents the signal energy in the time-frequency domain centred in (t,v).

•To analize the system linearity bispectrum and bicoherence need to be taken into account:

•If $S_{3x}=0$ the process is Gaussian and linear

•If $S_{3x} \neq 0$ the process is not Gaussian and

•if c_{3x} is constant - the process is linear •if c_{3x} is not constant - the process is not linear

Bispectrum

Low frequency noise coupled at higher frequencyes

Bicoherence

A nonlinearity of the 50 Hz with its armonics is observed. There is present a big coupling between the 20 Hz and the 100 Hz and a smaller one between the 20 and 30 Hz.

N.i.P.S Laboratory Noise in Physical Systems

Spectrogram:

start time: GPS=710517543, local=12 Jul 2002 15:58:54 -5 1800 -10 1700 -15 frequency [Hz] 1600 -20 1500 -25 -30 1400 -35 1300 0 10 20 30 40 50 60 70 Ni.P.S Labora Noise in Physical Sys time [hr]

R

Let's look at an example of non-linear oscillator:

the Duffing Oscillator

$$\ddot{x} + \delta \dot{x} + \beta x + \alpha x^3 = \gamma \cos \omega t$$

WISEP

A two springs system

- A mass is held between two springs.
 - Spring constant *k*
 - Natural length /
- Springs are on a horizontal surface.
 - Frictionless
 - No gravity

Transverse Displacement

Noise in Physical Systems

- The force for a displacement is due to both springs.
 - Only transverse component
 - Looks like its harmonic

$$F = -2k\left(\sqrt{l^2 + x^2} - l\right)\sin\theta$$

$$= -2k\left(\sqrt{l^{2} + x^{2}} - l\right)\frac{x}{\sqrt{l^{2} + x^{2}}}$$
$$= -2kx\left(1 - \frac{1}{\sqrt{1 + x^{2}/l^{2}}}\right)$$

Purely Nonlinear

- The force can be expanded as a power series near equilibrium.
 - Expand in x/l
- The lowest order term is nonlinear.

• Quartic potential

Noise in Physical Systems

- Not just a perturbation

$$F = -2kl\frac{x}{l} \left(1 - \frac{1}{\sqrt{1 + x^2/l^2}}\right)$$

$$F \cong -kl\left(\frac{x}{l}\right)^3 + \dots$$
$$V \cong \frac{k}{4l^2}x^4 + \dots$$

Mixed Potential

- Typical springs are not at natural length.
 - Approximation includes a linear term

$$F \cong -\frac{2kd}{l}x - \frac{k(l-d)}{l^3}x^3 + \dots$$

$$V \cong \frac{kd}{l}x^2 + \frac{k(l-d)}{4l^3}x^4 + \dots$$

WISEP

WER

Quartic Potentials

• The sign of the forces influence the shape of the potential.

Driven System

- Assume a more complete, realistic system.
 - Damping term
 - Driving force

$$m\ddot{x} = -\beta \dot{x} - kx - k\alpha x^3 + f\cos\omega t$$

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x + \alpha \omega_0^2 x^3 = f \cos \omega t$$

- Rescale the problem:
 - Set *t* such that $\omega_0^2 = k/m = 1$
 - Set x such that $k\alpha/m = 1$
- This is the Duffing equation

$$\ddot{x} + \gamma \dot{x} + x \pm x^3 = f \cos \omega t$$

Steady State Solution

• Try a solution, match terms

 $x(t) = A(\omega) \cos[\omega t - \theta(\omega)]$

 $\ddot{x} + \gamma \dot{x} + x \pm x^3 = f \cos \omega t$

Noise in Physical System

 $A(1-\omega^2)\cos(\omega t-\theta) - A\gamma\omega\sin(\omega t-\theta) \pm A^3\cos^3(\omega t-\theta) = f\cos\omega t$

trigonometric $\cos^3(\omega t - \theta) = \frac{3}{4}\cos(\omega t - \theta) + \frac{1}{4}\cos 3(\omega t - \theta)$ identities $f\cos\omega t = f\cos\theta\cos(\omega t - \theta) - f\sin\theta\sin(\omega t - \theta)$

$$[A(1 - \omega^{2} \pm \frac{3}{4}A^{2}) - f\cos\omega t]\cos(\omega t - \theta) \qquad f\cos\omega t = A(1 - \omega^{2} \pm \frac{3}{4}A^{2}) +[-A\gamma\omega + f\sin\omega t]\sin(\omega t - \theta) \qquad f\sin\omega t = A\gamma\omega \pm \frac{1}{4}A^{3}\cos 3(\omega t - \theta) \\= 0 \qquad \pm \frac{1}{4}A^{3}\cos 3(\omega t - \theta) \approx 0$$

WISEP

Amplitude Dependence

- Find the amplitude-frequency relationship.
 - Reduces to forced harmonic oscillator for $A \rightarrow 0$

 $f^{2} = A^{2}[(1 - \omega^{2})^{2} + (\gamma \omega)^{2}]$

- Find the case for minimal damping and driving force.
 - f, γ both near zero

Noise in Physical Systems

Defines resonance condition

$$f^{2} \cos^{2} \omega t = A^{2} (1 - \omega^{2} \pm \frac{3}{4} A^{2})^{2}$$

$$f^{2} \sin^{2} \omega t = A^{2} \gamma^{2} \omega^{2}$$

$$f^{2} = A^{2} [(1 - \omega^{2} \pm \frac{3}{4} A^{2})^{2} + \gamma^{2} \omega^{2}]$$

$$0 = A^{2}[(1 - \omega^{2} \pm \frac{3}{4}A^{2})^{2} + 0]$$

$$0 = 1 - \omega^{2} \pm \frac{3}{4}A^{2}$$

$$A(\omega) = \sqrt{\pm \frac{4}{3}(\omega^{2} - 1)}$$

Nonlinear Resonance Frequency

- The resonance frequency of a linear oscillator is independent of amplitude.
- The resonance frequency of a Duffing oscillator increases with amplitude.

... brings to hysteresis

- A Duffing oscillator behaves differently for increasing and decreasing frequencies.
 - Increasing frequency has a jump in amplitude at ω_2
 - Decreasing frequency has a jump in amplitude at ω_1
- This is hysteresis.

Nonlinear Resonance

(in general...)

Nonlinear resonance seems not to be so much different from the (linear) resonance of a harmonic oscillator. But both, the dependency of the eigenfrequency of a nonlinear oscillator on the amplitude and the nonharmoniticity of the oscillation lead to a behavior that is impossible in harmonic oscillators, namely, the foldover effect and superharmonic resonance, respectively.

Both effects are especially important in the case of weak damping.

The foldover effect

The foldover effect got its name from the bending of the resonance peak in a amplitude versus frequency plot. This bending is due to the frequency-amplitude relation which is typical for nonlinear oscillators.

The superharmonic resonance

Nonlinear oscillators do not oscillate sinusoidal.

Superharmonic resonance is simply the resonance with one of this higher harmonics of a nonlinear oscillation. In an amplitude/frequency plot appear additional resonance peaks. In general, they appear at driving frequencies which are integer fractions of the fundamental frequency.

Overdamped Duffing

Gammaitoni et al. Reviews of Modern Physics 1998

NON-Linear mechanical oscillators

NON-Linear mechanical oscillators

NON-Linear mechanical oscillators

http://www.nipslab.org/node/1676

Nonlinear Energy Harvesting, F. Cottone; H. Vocca; L. Gammaitoni **Physical Review Letters**, 102, 080601 (2009)

NON-Linear mechanical oscillators

Nonlinear Energy Harvesting, F. Cottone; H. Vocca; L. Gammaitoni **Physical Review Letters**, 102, 080601 (2009)

NON-Linear mechanical oscillators

 Nonlinear Energy Harvesting, F. Cottone; H. Vocca; L. Gammaitoni , Physical Review Letters, 102, 080601 (2009)

 NiPS
 Laboratory

 Noise in Physical Systems
 Helios Vocca - Energy Harvesting at micro and nanoscale, Aug. 1-6, 2010

Noise in Physical Systems

WER

Noise energy harvesting Non-linear systems next evolutions...

Elastic strain tensor, local coordinate system, z component Surface Deformation: Displaceme

Noise energy harvesting Only bistability???

A more general monostable

L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)

In conclusion: to think about...

- 1) Non resonant (i.e. non-linear) mechanical oscillators can outperform resonant (i.e. linear) ones*
- 2) Non-linear systems are more difficult to treat
- Bistability is not the only nonlinearity available... see:
 L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)

* wisepower technology patent. For more info see: www.nipslab.org, www.wisepower.it

Further readings

Energy harvesting for mobile systems:

Paradiso, J., A., Starner, T., *Energy Scavenging for Mobile and Wireless Electronics*, IEEE Pervasive Computing, Vol. 4, No. 1, February 2005, pp. 18-27.

Roundy, S., Wright, P.K., Rabaey, J.M. Energy Scavenging for Wireless Sensor Networks, 2003 Kluwer Academic Publishers, Boston MA.

Vibration Energy harvesting:

Meninger, S. et al. Vibration-to-Electric Energy Conversion, IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, 2001, pp. 64–76.

Nonlinear Vibration Energy harvesting:

L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)

F. Cottone, H. Vocca, and L. Gammaitoni, Phys. Rev. Lett. 102, 080601, (2009)

Noise and fluctuations:

H.L. Pecseli, Fluctuations in Physical Systems, Cambridge Univerity Press, 2000

Nonlinear dynamics:

S.H. Strogatz, *Nonlinear Dynamics and Chaos,* Addison-Wesley, 1994

Noise in Physical Systems