NiPS Summer School 2011 on Energy Harvesting at micro and nanoscale Semiconductor Nanowire Simulation for Technology Design

Giorgos Fagas

Electronics Theory Group Georgios.Fagas@tyndall.ie

www.tyndall.ie

Dublin Cork

Tyndall National Institute

	Established in 2004 (NMRC, UCC, CIT)	
	- largest research institute in Ireland	
	 capital investment >€200M and annual income ~ €35M 	
	 400 research engineers, scientists, students, interns & support staff 	1
	Brings together researchers in:	
	 Nanomaterials & Nanotechnology 	
OTHE	- Energy	
all was	- Electronics	
	- Photonics	
	- Theory & Modelling	
John Tyndall		
1820 - 1893 •	Objectives:	÷.
	 Research into Information and Communication Technologies of strategic value to Ireland 	
	 Technology transfer and collaboration with industry 	
	- Education & training; Outreach to community	
	www.tvndall.ie	e

Combination of skills in physics, chemistry, materials science, engineering

"from atoms to systems"

Electronics Theory Group overview

Technologies at Tyndall

Semiconductor Nanowire Simulation for Technology Design Overview

Moti	vation and aims:
Meth	nodology
-	Electronic structure
-	Charge transport
Resi	ults
-	Surface modification
-	Charge transport in locally oxidised NWs
-	Computational method development
-	Electron-phonon coupling
-	Nanowire-based CMOS
Cond	cluding Remarks

www.tyndall.ie

Semiconductor Nanowires -Simulations for Technology Design

Motivation and aims

Methodology Results Concluding Remarks

ZERØPOWER

The International Energy Agency predicts:

- ICT and consumer electronics account for approximately 15% of global residential electricity consumption
- By 2030, energy use by household ICT and consumer electronics will triple consuming 1700TWh

"Building the nano-to-micro bridge

for energy-sustainable ICT"

Why Zero-Power ICT?

Energy efficient ICT

- Low(er)-power devices for processing, sensing, communicating
- Energy dissipation & power management
- Renewable sources for consumer electronics and autonomous nano-scale devices

ICT for energy efficiency

- More efficient use of natural resources/energy by design
- G
- Change of energy consumption patterns
- Direct gains by intelligent distributed sensing, for health, safety-critical systems, environmental monitoring, industrial management and control

Smart Dust project the Mica mote

"autonomous sensing, computing, and communication system packed into a cubic-millimeter mote to form the basis of integrated, massively distributed sensor networks"

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, Computer **34**, 44 (2001)

Custom solar cell, custom CMOS → 16mm³

Off-the-self components

B.W. Cook and K. S. J. Pister, IEEE Proc. 94, 1177 (2006)

Towards one cubic millimetre

- ✓ Low-power active and sleep mode
- ✓ Thin-film Li battery
- ✓ Custom solar cells ~ 1mm²
- ✓ Temperature & pressure sensor

www.tyndall.ie

Blaauw group, Michigan

Nanowires What are they?

Definition (Wikipedia)

A nanowire is a nanostructure, with the diameter of the order of a nanometer. Alternatively, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length.

SiNAPS mote concept (see www.sinaps-fet.eu)

Ambient energy

R. J. M. Vullers, Zero-Power ICT Workshop 2009

R I M Vullers <i>et al</i> Solid-State Elec 53 6	84(2009)
	(200)

Source	Source power	Harvested power
Ambient light		
Indoor	0.1 mW/cm ²	10 μW/cm²
Outdoor	100 mW/cm ²	$10 \mathrm{mW/cm^2}$
Vibration/motion		
Human	0.5 m @ 1 Hz 1 m/s ² @ 50 Hz	4 μW/cm ²
Industrial	1 m @ 5 Hz 10 m/s ² @ 1 kHz	100 µW/cm ²
Thermal energy		
Human	20 mW/cm ²	30 µ W/cm²
Industrial	100 mW/cm ²	1-10 mW/cm ²
RF		
Cell phone	0.3 μW/cm²	0.1 μW/cm ²

Radiance map

photovoltaics

Operation point: intersection of the cell I-V characteristics with load line V = I R_L Supplied power: shaded area

Single nanowire coaxial cables

single p-i-n coaxial silicon nanowire 2.3%-3.4% efficiency delivering 200pW under 1-sun illumination

B. Tian, X. Zheng, T. J. Kempa1, Y. Fang, N. Yu, G. Yu, J. Huang & C. M. Lieber, Nature **449**, 885 (2007)

Axial junctions in nanowire arrays

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Nano Lett. 9, 1549 (2009)

Arrays of nanowire coaxial cables

Towards miniaturisation

robust performance against thin film solar cells

Erik Garnett and Peidong Yang, Nano Lett. 10, 1082 (2010)

www.tyndall.ie

How does it work?

Measure the conductivity response of nanowires as ions change electrostatics or as target molecules are adsorbed on the surface of nanowires

- > avoids extra complexity of optical sensing
- Iower cost
- ➤ easier to miniaturise

Why does the conductivity change?

chemically modulated field effect

> charge carrier scattering and/or form change from adatoms

Gas detection

ethanol sensing with ZnO NWs down to 1ppm

modified SiO_x surface with 3 aminopropyltriethoxysilane (APTES) to provide a surface that can undergo protonation and deprotonation, where changes in the surface charge can chemically gate the p-doped SiNW

Selectivity by covalent functionalisation

Autonomous sensing device

Proof-of-concept

powering of sensor units with single-NW PVs (10-100nW)

http://cmliris.harvard.edu/ Charles Lieber group

B. Tian, X. Zheng, T. J. Kempa1, Y. Fang, N. Yu, G. Yu, J. Huang & C. M. Lieber, Nature **449**, 885 (2007) See also: S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, Nature Nanotech. **5**, 366 (2010)v

The MOS transistor: first approach

Courtesy J.-P. Colinge

The MOS transistor: first approach

Courtesy J.-P. Colinge

The MOS transistor: off state

1: If the source and substrate are grounded there is no current in the source-substrate junction

2: If the drain voltage is positive the drain-substrate junction is reverse biased and there is no current in that junction

3: The gate is insulated from the rest of the device

 \rightarrow There is no current flowing in any of the terminals

Courtesy J.-P. Colinge

The MOS transistor: off state \rightarrow on state

1: Positive gate voltage is applied. This repels free holes from the region under the oxide.

2: Junctions bias is unchanged, so there is no current in any of the terminals.

 \rightarrow There is no current flowing in any of the terminals

Courtesy J.-P. Colinge

The MOS transistor: on state

1: When a large enough positive gate voltage is applied electrons from the source are attracted underneath the gate oxide. (inversion layer)

2: An N-type layer called the "inversion channel" connects the N-type source to the N-type drain.

Courtesy J.-P. Colinge

www.tyndall.ie

 \rightarrow Current flows from source to drain like in a resistor

Basic MOSFET equations

Tyndall

•Triode
$$I_D = \mu C_{ox} \frac{W}{L} \Big[(V_G - V_{TH}) V_D - \frac{1}{2} n V_D^2 \Big]$$

•Saturation $I_{Dsat} = \frac{1}{2n} \mu C_{ox} \frac{W}{L} (V_G - V_{TH})^2$
•Subthreshold swing $S = n \frac{kT}{q} \ln (10)$
•Reduced transconductance $\frac{g_m}{I_D} = \sqrt{\frac{2\mu C_{ox} W/L}{nI_D}}$

n is the BODY EFFECT COEFFICIENT, *aka*. BODY FACTOR Courtesy J.-P. Colinge It is often neglected (n=1) in simplified models... but it is definitely present in real devices.

Current below threshold (subthreshold slope, S)

Courtesy J.-P. Colinge

The smaller the value of *S*, the better!

Tyndall

- the "faster" the devices switches from off to on

Gate-to-channel coupling; Body Effect

D

S

The DGMOS transistor: n=1

DGMOS transistor: Double-Gate MOS Transistor

Courtesy J.-P. Colinge

Transistor scaling why nanowires?

Sing et al, IEEE TED 55, 3107 (2008)

Intel 22nm Ivy Bridge (2011)

R. S. Chau, Technology@Intel Magazine (2006)

Above threshold: Tyndall large cross section $W_{si} = t_{si} = 20 \text{ nm}, N_a = 5 \times 10^{17} \text{ cm}^{-3}$ х 10⁻⁸ 3г Gate Source Drain t_{si} Current W_{si} -2 -3 2 3 x 10⁻⁸ Classical Quantum Electron concentration (Poisson) Electron concentration (Poisson+Schrödinger) x 10⁻⁸ x 10⁻¹ × 10⁻⁸ Courtesy J.-P. Colinge

Below threshold: small cross section

Above threshold: small cross section

Why nanowires?

Scientifically interesting Technologically relevant > energy harvesters > large surface to volume ratio (photovoltaics, thermoelectric, mechanical) surface chemistry can influence electronic properties (bio-)chemical nanosensors > quantum effects > field-effect transistors multi-functionality light-emitting diodes and lasers...

SkU

Nanowires How are they made?

Nanowire electronics realisations: state-of-the-art

Semiconductor Nanowires -Simulations for Technology Design

Background Methodology Results

Concluding Remarks

Simulation framework

Electronic structure

Obtained from or based on first-principles

Density Functional Theory (DFT)

Plane wave implementations

- VASP and Quantum Espresso programme package [http://cms.mpi.univie.ac.at/vasp/, http://www.quantum-espresso.org/]
- plane wave basis with 400 eV energy cutoff
- various functionals (LDA, GGA-PBE)
- full relaxation with no symmetry constraints (force < 0.01eV/Å)

Numerical atomic orbital implementations

• OpenMX [http://www.openmx-square.org/]

Density Functional Tight Binding (DFTB)

- approximation for energy functional around reference atomic density
- DFT-parameterised LCAO with minimal basis set for valence orbitals

Th. Frauenheim, G. Seifert, M. Elstner et al, Phys. Stat. Sol. (b) 217, 41 (2000)

Current expressed within the Landauer approach

$$i(E) = e / h \times T(E, V)[f_l(E) - f_R(E)]$$
$$I = \int i(E) dE$$

Transmission calculated using the in-house code TIMES (Transport In MEsoscopic Systems)

Development principles of TIMES transport module

Availability: source code needs be accessible	s to
Portability: decoupled from electronic structure platform as much as possible	Scalability from: available platforms
Reusability: continuous support/development to user requirements	new transport (parallel) algorithms

TIMES Capabilities

Tyndall	Capabil
Robust generic scientific tool	
 GF et al, Phys. Rev. B 60, 6459 (1999) (heat transfer at interfaces and disordered media GF, G. Cuniberti, and K. Richter, Phys. Rev. B 63, 045416 (2001) (molecular electron extended Hueckel) R. Gutierrez et al, Phys. Rev. B 65, 113410 (2002); GF, A. Kambili, and M. Elstner C 389, 268 (2004) (molecular electronics with methods based on first-principles) GF et al, Phys. Rev. B 71, 224510 (2005) (mesoscopic proximity effect with effective equations) 	ia) ics with hem. Phys. Lett. mass
Developed to a technology design tool	
 modular interface for new applications/electronic structur required DFTB, Quantum Espresso (Wannier post processing), OpenMX 	e platforms
new parallel algorithms needed Energy/k-point parallelisation; matrix manipulation in progress	
> application-dependent functionalities to be added Self-consistent charge, gating; inelastic scattering	
Open to discuss evaluation and further developments	www.tyn

v.tyndall.ie

Semiconductor Nanowires -Simulations for Technology Design

- Band gap modification due to surface termination Concluding Remarks

Quantum confinement effect

a simple model for Si conduction band quantisation (particle in a box) A.J. Read et al, Phys. Rev. Lett. 69, 1232 (1992) $[100]: E_{c} = E_{c0} + \frac{\hbar^{2}}{2m_{T}^{*}} \left(\frac{n_{y}\pi}{D}\right)^{2} + \frac{\hbar^{2}}{2m_{T}^{*}} \left(\frac{n_{z}\pi}{D}\right)^{2}$ E $[010]: E_c = E_{c0} + \frac{\hbar^2}{2m_*^*} \left(\frac{n_y \pi}{D}\right)^2 + \frac{\hbar^2}{2m_\pi^*} \left(\frac{n_z \pi}{D}\right)^2$ for $n_y = n_z = 1$, zone folding and $m_{1}^{*} > m_{T}^{*}$ yields \rightarrow Direct band gap \overline{E}_{a} Similarly for valence band with $m_{hh}^* > m_{lh}^*$; Subtraction of subband energies yields

 \rightarrow Increasing magnitude of band gap with decreasing diameter

$$\Delta E = \frac{1}{2} \left(\frac{2}{m_{hh}^*} + \frac{1}{m_L^*} + \frac{1}{m_T^*} \right) \left(\frac{\hbar \pi}{D} \right)^2$$

Scanning Tunnelling Spectroscopy

Ma et al, Science 299, 1876 (2003)

Tunable Light Emission from Quantum-Confinement in Silicon Nanowires

Tyndall

M. Nolan, S. O'Callaghan, G. Fagas, J. C. Greer and Th. Frauenheim, Nano Lett. 7, 34 (2007)

Hybridisation vs quantum confinement

Tuning via varying surface treatment

Semiconductor Nanowires -Simulations for Technology Design

Results

Computational methods development

Concluding Remarks

Computational challenge

Typical problem: 10 ³ nm ³ SiNW (~ 50k Si atoms) Using minimal basis set of 4 orbitals (s, p _x , p _y , p _z) gives an array of 200000 x 200000 Difficulties → Turnaround time (beyond my lifetime) Memory footprint (~TByte)		
Linear brute-force algorithms: • <u>Computational complexity</u> : O(N ³) • <u>Memory reqs</u> : O(N ²)	Linear recursive algorithms: • <u>Computational complexity</u> : O(M ³ x N _x); M = N _y N _z • <u>Memory reqs</u> : O(M ² x N _x)	
Parallel algorithms: • <u>Computational complexity</u> : O((M ³ x N _x)/p + M ³ x log ₂ (D)) • <u>Memory reqs</u> : O((M ² x N _x)/D + M ² x D/P)		

P. S. Drouvelis *et al*, Comp. Phys. **215**, 741 (2006)S. Cauley et al, J. Appl. Phys. **101**, 123715 (2007)

Nano-TCAD

Multiscale/sliding-scale approximation approaches and new parallel algorithms are necessary for technology design based on atomic-scale modelling.

Common algorithms for computing eigenvalues and their complexity • QR algorithm [O(9N²):O(N³)] (scaling increases with increasing eigenvalue density) • Jacobi iterative method O(N³) (slower than QR but more accurate and easier to parallelise) • Lanczos / Arnoldi iterations O(N³) (iterative methods, usage of Krlylov subspace) • **Divide-and-conquer** $[O(N \times log_2 N):O(N^3)]$ (dependent on the amount of deflation) • SYISDA O(N³) (Symmetric Invariant Subspace Decomposition Algorithm) (mapping the eigenvalues at an [0,1] interval) • RRR O(N²) / mRRR (RELATIVELY ROBUST REPRESENTATIONS) (hybrid of Divide-and-Conquer and inverse iteration)

Divide, Reduce and Conquer (DRC)

- Uses a black box for diagonalisation
- Sparse matrices treated in block-tridiagonal as is

(effective mass) model for a nanowire

$$\otimes = 2t_x + 2t_y + 2t_z + U_{SC}$$

$$* = 2t_y$$

$$\times = 2t_z$$

$$t_{x,y,z} = -\frac{\hbar^2}{2m_{x,y,z}^*}$$

Assume isotropic mass and $U_{SC} = -(2t_x + 2t_y + 2t_z)$ $\Rightarrow E \in [-6,6]$

Benchmarking Results

Comparison of DRC against full eigenvalue solver LAPACK for several sizes of model nanowires between 250 to 9000 sites. Selected eigenvalues $\varepsilon_c = 3.0 \text{eV}$

Serial implementation

Parallel implementation

Semiconductor Nanowires -Simulations for Technology Design

Results

- Nanowire-based CMOS

Concluding Remarks

Junctionless transistor

Tyndall

Effective gate length
Dopant profile issue

Dopant extension issue

Dopants in nanowires fundamental limitation for junctions

(Junctionless) transistor scaling

Transistor behaviour at 3nm

L. Ansari, B. Feldman, G. Fagas, J-.P. Colinge, and J. C. Greer, Appl. Phys. Lett. **97**, 062105 (2010)

www.tyndall.ie

Subthreshold slope

www.tyndall.ie

CNT junctionless transistors

www.tyndall.ie

Si and CNT JL transistors comparison

Current saturation

Estimates of I_{on} and I_{off}

Semiconductor Nanowires -Simulations for Technology Design

Background Recent results and methodology Next steps Concluding remarks

www.tyndall.ie

Due to size-effects surface chemistry does influence the electronic structure and, hence, the electrical and optical properties

Reduced scattering in [110] nanowires compared to [100] nanowires

Conventional p-n junctions cannot be routinely formed at the few nanometer length scale and the junctionless transistor design offers a viable alternative

> Multiscale/sliding-scale approximation approaches and new parallel algorithms are necessary for technology design based on atomic-scale modelling \rightarrow <u>Divide</u>, <u>Reduce and Conquer</u>

Summary

Semiconductor nanowires provide an ideal technology enabling platform

Several open issues regarding:

- surface chemistry
- realistic interfaces
- doping and dopant level fluctuations
- energy dissipation due to e-ph coupling

Acknowledgments

Lida Ansari (Tyndall, ETG) Prof Jean-Pierre Colinge (Tyndall, Micro/nano-electronics centre) Prof Thomas Frauenheim (BCCMS) Dr Baruch Feldman (Tyndall, ETG) Dr Jim Greer (Tyndall, ETG director) Marios Iakovidis (Tyndall, ETG) Dr Philip Murphy-Armando (Tyndall, CMT group) Dr Michael Nolan (Tyndall, ETG) Pedram Razavi (Tyndall, USD group) Dr Sadasivan Shankar (INTEL Santa Clara, Materials Modeling group)

N-A

Thank you! Q&A

ZERØPOWER

www.tyndall.ie