

UNIVERSITY of GLASGOW

Nanoelectronic Thermoelectric Energy Generation

Lourdes Ferre Llin <u>l.ferre-llin.1@research.gla.ac.uk</u>

August 5th, 2011

NiPS Workshop 2011

Thursday, 4 August 2011

1

Overview:

- Brief introduction on Thermoelectric generators.
- Goal of the project.
- Fabrication and Measurements for different devices.
 - Thermal conductivity.
 - Electrical conductivity.
 - Seebeck coefficient.
- Conclusions and future work.

Thermoelectric devices:

- Are used in applications for generating electricity due to a difference of temperature and also for producing cooling in presence of electricity.
- There are three stablished thermoelectric effects, known as:
 - Peltier effect.
 - Thomson effect.
 - Seebeck effect.

Their fabrication consists of pairs of p-type and n-type semiconductor materials forming a thermocouple.

How does it work?

- These thermocouples are then connected electrically forming an array of multiple thermocouples.
- When we apply heat and cold, it is generated a difference of temperature that will generate electricity.

Thermoelectric generators.

Applications:

- Almost any heat source could be used to generate electricity, such as natural sources (solar heat) and waste heat of any device or machine that generates heat as a byproduct.
- Recovering the energy lost as heat could improve drastically the efficiency of a device or machine.

Problem of thermoelectric devices to date:

- Low efficiency.
- Commercial devices produced using Bi and Te.

Advantages:

- Not moving parts.
- Require very little maintenance
- Can provide energy as long as there is a difference of temperature.

Objective of this project.

- Fabricate micro/nano structures to study the improvement of the efficiency.
- The heterostructures technology made of Si/SiGe that will be investigated are:
 - □ 2D superlattices.
 - 0D quantum dots.
 - □ 1D nanowires.
- The final thermoelectric design will be integrated on a mm-sized single silicon chip. This will be used to power a CMOS sensor .
 - □ The generator will work as a power source for an autonomous system

August 5th, 2011

Efficiency & Figure-of-Merit

• The efficiency of a generator is given by:

 $\theta = \frac{energy \, derived \, to \, the \, load}{heat \, energy \, absorved \, at \, hot \, junction}$

• Maximum efficiency
$$\longrightarrow \theta_{max} = \eta_c \cdot \lambda$$

$$\eta_c = \frac{T_H - T_C}{T_H}$$

Product of the Carnot efficiency times the thermoelectric properties of the materials.

$$\lambda = \frac{\sqrt{1 + Z \cdot \overline{T}} - 1}{\sqrt{1 + Z \cdot \overline{T}} + \frac{T_C}{T_H}}$$

Figure-of-Merit
$$Z = \frac{\alpha^2 \cdot \sigma}{K}$$

2D Superlattice

10.0kV 13.2mm x4.51k SE(U) 2/4/11 11:03

August 5th, 2011

10.0um

August 5th, 2011

Thermal conductivity $\longleftrightarrow (W \cdot m^{-1} \cdot K^{-1})$

3-omega method:

- Placing a directly conductor on the surface of the material, which will serve as a heater and as a thermometer.
- Driving an AC current through this line at frequency 1-omega.
- This current will heat the conductor, which in return will be measurable as a resistance change at the frequency 3-omega.

- Anisotropic material:

Heaters: 10 nm NiCr + 50 nm Au

-Different widths for the line, from 5um up to 200um.

-Length of the line variable to change the resistance of the metal line.

- To measure the V_3w we need to cancel the voltage at 1w

Analysis 'Slope-method' for low frequencies: measuring K for substrate.

August 5th, 2011

NiPS Workshop 2011

Thursday, 4 August 2011

Analysis 'Differential method' for high frequencies:

Thursday, 4 August 2011

August 5th, 2011

Thermal conductivity: Thermal AFM

Pd resistor

Thermal probe fabricated in JWNC.

- Palladium resistor located at the end of the tip.
- Four gold lines that allow a standard four-point measurement.

Set up:

- A fixed temperature is needed as a reference.
- Reference obtained by calibrating the system.
 - Instrument used for calibration is able to define an absolute temperature based on the measurement of Johnson noise.

Dot with known temperature used to calibrate the thermal ' probe.

Tuesday, 24 May 2011

August 5th, 2011

Thermal conductivity: Thermal AFM

Thursday, 4 August 2011

Electrical conductivity

- Sample_ID Design p-type Thickness (QW) Thickness etched $\rho(\Omega \cdot \mu m) = \sigma(S \cdot m)$ Interested in measuring the lateral electrical conductivity of Ohmicontact 3,343
- Fabrication:
 - Development of an etch profile to contact all the QWs.
 - Deposition of SiN as a passivation layer.
 - Open windows on SiN to create ohmic contacts.
 - Deposit metal.

August 5th, 2011

Electrical conductivity

- Mixed process etch \leftarrow good profile for the side walls.
- Still the presence of an undercut at the top part of the side wall.

August 5th, 2011

Electrical conductivi

Sample_ID	Design p-type	$N_A(cm^{-3})$	Thickness	$\rho(\Omega \cdot \mu m)$	$\sigma(S \cdot m)$
8557_J6	2	$1 \cdot 10^{19}$	3.268 um	9.54	104,733
8569_18	2	$1 \cdot 10^{18}$	6.048 um	26.14	38,255
8482_E4	2	-	11.340 um	299.14	3,343
8572_D2	2	$1 \cdot 10^{19}$	6.804 um	53.024	18,859
8579_E2	1	$1 \cdot 10^{19}$	6.048 um	11.327	88,284

August 5th, 2011

- Voltage produce across two points on a material divided by the temperature difference between them.
- Standard Hall Bar device with the addition of having two heaters and two thermometers on top of the bars.

 α

 ΔT

• This design allows to measure the three parameters on the same device.

$$R_2 = R_1 \cdot (1 + \beta \cdot (T_2 - T_1))$$

August 5th, 2011

- Problems:
 - Results show a big influence of the substrate thermal conductivity.
 - Silicon \longrightarrow 150 $(W \cdot m^{-1} \cdot K^{-1})$
 - Necessary to remove the substrate of the final devices.
 - Very thin membranes, easy to break them as well due to the stressed material under test.

August 5th, 2011

Conclusions and Future work

- Optimise substrate etch in order to get accurate results.
- Cross check thermal conductivity results with the thermal AFM, to know the error of our measurements.
- Design and fabricate future devices for measuring the vertical thermal and electrical properties of the different wafers obtained so far.
 - Easier fabrication process as it will not be necessary to remove the substrate.

Participants in the project

- University of Glasgow
 - Device processing
 - Material characterisation
- Politecnico di Milano, Como Italy
 - Epitaxial growth (LEPECVD)
- University of Linz, Austria
 - Material characterisation (XRD)
- ETH in Zurich, Switzerland
 - Material characterisation (TEM)

Thanks!

August 5th, 2011

NiPS Workshop 2011

Thursday, 4 August 2011