

Noise induced and enhanced signal processing in nanoelectronics

F. Hartmann¹, S. Höfling¹, A.Dari² A. Forchel¹, L. Gammaitoni² and L. Worschech¹

¹Technische Physik, Physikalisches Institut, Universität Würzburg and Wilhelm Conrad Röntgen Research Center for Complex Material Systems ²NiPS Laboratory, Dipartimento di Fisica, Universita di Perugia

- Stochastic resonance: Weak signals can be enhanced by fluctuations
- **Ingredients:**
 - Noise
 - Subthreshold signal
 - Non-linear system, e.g. bistable systems
- SR as model was introduced to explain the periodic recurrences of ice ages: Benzi, Parisi, Sutera, Vulpiani

Abrupt Glacial Climate Changes due to Stochastic Resonance

PHYSICAL REVIEW LETTERS

21 JANUARY 2002

Andrey Ganopolski and Stefan Rahmstorf* Potsdam Institute for Climate Impact Research, Box 601203, 14412 Potsdam, Germany (Received 5 July 2001; published 4 January 2002)

... down to the micro and nano-scale

Electron microscope images of a human hair and micro-pillar fabricated @ our department

- Technology & working principle
 - Resonant tunneling diode
 - Negative differential conductance & bistability
 - Noise induced switching
- Stochastic Resonance
 - Starting: From AC modulation
 - To: Periodic light illumination
- Logic stochastic resonance (LSR)
 - NOR & NAND gates
 - Noise enhanced functioning

UNIVERSITÄT WÜRZBURG RTD: Fabrication

- RTDs AlGaAs/GaAs/AlGaAs DBS
- Dry chemical etching to define mesa from 1 µm down to 50 nm
- BCB (polymer) for mesa isolation
- Top Au/Ti/Ni contact

Esaki, L. and Tsu, R.: Tunneling in a Finite Supperlattice, Appl. Phys. Lett. Vol. 22 562 (1973).

NIPS Summer School, August 2011, Perugia

SR in Resonant Tunneling diodes

Julius-Maximilians-

WÜRZBURG

• RTD is bistable with stable outputs $I_H = 800 \ \mu A$ and $I_L = 270 \ \mu A$

- Noise induced switches from one stable state appear
- Time scale is given by the inverse of the Kramer's rate

UNIVERSITÄT WÜRZBURG SR recording: Spectral amplitude

• For $P_{noise} < P_{SR}$ no spectral component at f = 500 Hz is found.

• For $P_{noise} > P_{SR}$ the spectral component at f = 500 Hz is still apparent.

At the optimum noise level, the spectral amplitude reaches a maximum value and is decreasing apart P_{SR} .

For P_{noise} < P_{SR} the spectral component at f = 500 Hz is increasing.
Maximum synchronization @ P_{SR} => SR.
For P_{noise} > P_{SR} the spectral component is decreasing again.

Simulations (solid):

- Ideal two state modell (Schmitt Trigger) with parameters from the experiment.
- e.g. the barrier height was set to 16 mV as the hysteresis width of the device was 32 mV

UNIVERSITÄT SR: Under periodic light modulation

Now:

- Change from ac modulation to a periodic light modulation
- Energy of the light E = 2.73 eV (448nm) above the GaAs bandgap
- Mechanically chopped at 500 Hz

• For $P_{noise} < P_{SR}$ the spectral component at f = 500 Hz is increasing. Maximum synchronization @ P_{SR} => **SR**. • For $P_{noise} > P_{SR}$ the spectral component is decreasing again.

UNIVERSITÄT WÜRZBURG SR: Comparsion ac versus light modulation

- At P_{noise} = 32 nW the output follows almost perfectly the input signal !!
- SR for either peridoic ac modulation or periodic light modulation

At $P_{noise} = 32 \text{ nW}$ the output follows almost perfectly the input signal !!

Logic Stochastic Resonance

Julius-Maximilians-

WÜRZBURG

Parameters:

- Logic inputs: $V_{1,2} = 0$ (2) mV
- $I = I_1 + I_2 = 0 + 0 = 0$
- I = 0 + 1 = 1 + 0 = 1
- I = 1 + 1 = 2
- Vac was set to 76.8 mV with a frequency of 1 kHz.

Two universal logic gates:

- NOR/NAND
- Noise induced logic gate switching
- Simulations agree with experiment

Logic Stochastic Resonance

Ulius-Maximilians-

WÜRZBURG

• It is useful to describe the probability to obtain for the logic gates by the differences

NOR: $<\Delta \lor >=< \lor (I=0) > -< \lor (I=1) >$ NAND: $<\Delta \lor >=< \lor (I=1) > -< \lor (I=2) >$

• Two maxima occur:

For the NOR gate operation: P_{noise}=0.9 nW

And for the NAND gate operation: P_{noise} =1.4 nW

- Stochastic resonance in RTDs
 - RTDs are bistable devices even @ RT
 - SR for weak ac forcing with f = 500 Hz @ Pnoise = 32 nW
 - SR for weak periodic illumination with f = 500 Hz
 @ Pnoise = 32 nW

Logic stochastic resonance

- Logic NOR & NAND gate with switching voltages $V_{1,2} = 0(2)mV$
- LSR for both gates @ noise powers ~nW

- Supported by: EU IST-SUBTLE, EU FP7 Nanopower, State of Bavaria
- www.nanopwr.eu NANOPOWER

Many thanks for your attention!