N POLITECNICO DI MILANO

Laboratory for Nanotechnology Epitaxy and Spintronics on Silicon

SiGe heterostructures for optoelectronics applications

<u>Fabio Isa</u>, Jacopo Frigerio, Daniel Chrastina, Stefano Cecchi, and Giovanni Isella

Outline

Importance of optoelectronics interconnections

Low Energy Plasma Enhanced CVD

□ SiGe heterostructures for optoelectronics applications

- Ge photodiodes and infrared cameras
- MQWs as modulators, light sources
- Ge virtual substrate for III-V integration on Si

Conclusions

Optical interconnections – different scales

Courtesy of IBM

Optical interconnections – on chip

Optical interconnections – building blocks

LEPECVD reactor schematics

□ High density - low energy plasma No ion induced damage \rightarrow epitaxy Deposition rate independent on substrate temperatures Control of surface diffusion lenght Wide range of deposition rates From 0.1 to 10 nm/s Good control of film composition Sharp interfaces between different layers

Strain and film morphology in SiGe epitaxy

Ge has a lattice parameter 4.2% larger than Si

Mismatch strain can lead to the formation of

- 3D island
- Surface roughening
- Poorly defined interfaces

All these phenomena can be partially suppressed reducing surface

atoms diffusion

Superficial diffusion

The morphology of epitaxial film is strongly influenced by

- □ Rate of arrival of reactive species: <u>deposition rate</u>
- Diffusivity of the adsorbed species on the surface: <u>substrate temperature</u>

$$L = 2\sqrt{D\tau}$$

$$L$$
 $D = I$
Diffusion

Time for the deposition of a 1 atomic layer

lenght

Germanium epitaxy: diffusion lenght

Plastic relaxation in SiGe system

Bulk bandstructures

Ge-on-Si photodiodes

J. Osmond et. al. *Thin Solid Films* **517**, 380 (2008). G. Isella et. al. *Semicond. Sci. Technol.* **22**, S26 (2007).

Ge-on-Si photodiodes p i n versus n i p structure

Ge-on-Si infrared camera

The low temperature and the low thermal budget annealing employed in the deposition are compatible with <u>front end CMOS processing</u>

SiGe MQWs for optoelectronic applications

SiGe MQWs – electronic properties

SiGe MQWs – growth procedure

Ge MQWs - optical properties

Absorption properties are dominated SiGe Ge SiGe Siols Geoles strained barrier 50x Ge OW by the direct gap confined states. Sio.15 Geo.85 strained barrier Indirect gap states can be probed by Energy relaxed Sig Geog buffer laver PL graded buffer λ(nm)₁₂₀₀ 1400 1600 Si(100) Growth direction LH2-c⊡2 HH2-c⊡2 сг2 1200 2.00 сг1 PL Intensity (arb. units) 1000 cL1 Indirect 800 HH1-cГ1 1.50 Recombination o E(meV) H1-cl 1.00 .00 0.D. HH1 cL1-HH1 S01-c/1 HH2 1.00 0.0 -40 LH1 LH2/ **SO1** -80 0.50 0.50 0.50 50 100 150 Monolayer number Direct Recombination حنتا 0.00 1.00 1.10 0.80 0.90 1.20 0.00<u>1...</u> 0.70 E(eV) 0.00 1.00 0.80 E (ev)

PL and transmission measurements M. Guzzi, Unimib

M. Bonfanti et. al. Phys. Rev. B 78, 041407(R) (2008

M. Bonfanti et. al. Physica E 41, 972 (2009). M. Virgilio et. al. Phys. Rev. B 79, 075323 (2009)

Ge MQWs – transient gain

P. Chaisakul et al , Phys. Rev. B 79, 201306(R) (2009).
P. Chaisakul et al , Phys. Rev. B 81, 045320 (2010).

P-p by S. Chatterjee – Marburg Uni

Quantum confined Stark effect modulators

Ge for III-V integration on Si

Conclusions

- The LEPECVD growth technique allows to obtain SiGe heterostructures with high optical performances
- Tunable pin and nip Ge photodiodes with ultralow dark current
- Ge infrared cameras
- Optical gain at the direct gap
- QCSE elettro-optical modulators
- □ High quality Ge for the III-V integration on Si

