
Fluctuations in Small Systems 
the case of single molecule experiments 

“I do not believe a word he is saying, but I am afraid  
that one day I will have to learn it”   (Bob Silbey) 

force × distance  ≈  kBT >> quantum scale 

for an introduction, C. Bustamante et al, Physics Today, July 2005, 43-48 
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Single molecule experiments  
 (after 1990) 

•   techniques to measure forces in the pN range  
    (10-2-103)pN, and distances in the nm range  
    (nanodevices); 

•   with high time resolution to track the trajectories  
    of single biomolecules; 

•   access to new phenomena in molecular and cellular  
   biophysics → new physical insight in non-equilibrium  
   (n.e.) statistical physics. 



The physical problem 

             Purely mechanical models are too naïve 

•   energies involved in molecular processes are a few kBT  
   (at T=298K, 1 kBT = 4.1pN⋅nm = 0.6kcal/mol) 
              forces ~ 10pN              distances ~ 1nm 
    Force scale: Brownian, 10fN; molecular motors, 10pN; folding (H-bond),   
     100pN; covalent bond (1eV for 1Å), 1nN 

•   thermal fluctuations become extremely important as  
   they determine the efficiency of the molecular motors; 

•   importance of rare events and large deviations from  
   average behavior a new thermodynamics 



Mechanochemistry (after1990) 

>10 pN  
10-3s 

10-2-10pN 0.1-102pN 
1nm 

AFM 

Optical tweezers Magnetic tweezers 

For an introduction, T. Strick et al, Physics Today, Oct. 2001, 46-51 

〈F〉 = κ 〈X〉 
〈δX2〉 = kT/κ
〈δF2〉 = κ kT 
〈F〉 = kT 〈X〉/〈δX2〉

 1pN 



          Examples                

kinesin “walking” along a microtubule, 
fueled by ATP hydrolysis  

transcription by RNA polymerase 
enzyme rectifies thermal noise   

fuel: ATP→ADP+20 kBT; high efficiency: 40-60% despite pauses, arrests, backtracking events 



•   net currents across (heat,  
   electric, mass) 

•   dissipate energy constantly 

Example: kinesin 

 ATP  →  ADP + 20 kBT 
 1 step: 8nm in 10-15ms 
 work/step: 12 kBT (avg. load) 

 efficiency:  ~60% 
 dissipated pwr.: 650 kBT/s 

Small systems 

A. Mostly steady state 



B. Equation of state and fluctuation depend on the choice of 
(few) control parameters 

a  distance X: tunable control parameter; 
    force on one end/bead: fluctuating variable; 
    A(T,X) – Helmholtz f.e.  

b  force on free end/bead:  
    tunable control parameter; 
    chain extension X: 
    fluctuating variable; 
    G(T,F) – Gibbs f.e. 

STRETCHED POLYMER 

in small systems 
force-extension  
characteristics 
curves not uniquely 
determined 

control often incomplete  



C. Subjected to non-equilibrium transformations…  

Xint = {xi} 

Q hard to measure → 
    [for aperiodic X(t)]   

F ≡ F(Xint,X) 

…according to a given protocol 
 X(t):  Xi = 0 → Xf 

X determines the thermodynamic state of the system 

Force F=F(Xint, X) is the fluctuating variable 



Work probability distribution 

½ kX2 



How does RNA fold? 

S15,  
wild 

CD4, 
canonical 

E. Coli 

J. Liphardt et al, Science (2002) 

stem 

helix 1 helix 2 

U=uracil (thymine) basepairs with Adenine and also  
with Guanine 

Single stranded RNA structures 



folding - unfolding 

•   mechanical stretching of a single RNA molecule (20nm long),  
   at constant loading rate r (below: r = 7.5pN/s) 

•   irreversible folding-unfolding cycles are hysteretic → work is dissipated 

3µm 

u-force 

f-force 



P(W) exhibits negative “fat” tails 

•  linear contributions from the entropy loss due to the stretching of the    
  molecular handles and of the elastic stretching of single-stranded RNA 

nonlinear regime 

3 values of r  

Wdiss(kBT) 

3 stretching 
lengths ΔX 



Fluctuation Theorems 
•   ΛF(t): n.e. forward process λF(t):  λA → λB ; T constant; 
   A: equilibrium initial state, t= ti ; B*:  n.e. final state, t= tf  

•   ΛR(t): n.e. reverse process λR(t):  λB → λA    
   B: equilibrium initial state, t = ti ; A*:  n.e. final state, t = tf 

•   ΔG=GB-GA  free energy difference between equilibrium states A and B 

•    ΛR(t) is time reversed with respect to ΛF(t), i.e. ΛR(s) = ΛF(t-s) for  
   0≤s≤t, with corresponding work p.d. PF(W)  and  PR(W)  

NB: for reversible λ(t) 

A B 

F 

R 

⊕ 

⊕ 

ΔG = Wrev 

(Crooks, 1999) 

A 

B 

applies to cyclostationary 
protocols, too 



The Jarzynski Equality  (1997) 

Re-write Crooks’ FT as 

   PR(-W) = PF(W) exp[-(W-ΔG)/kBT] 
               = PF(W) exp[-Wdis/kBT] 

and integrate or 



The FT physics  

•   free-energy differences can be extracted from 
   nonequilibrium data; 

•   〈W〉 ≥ ΔG, or equivalently, 〈Wdis〉 ≥ 0,  
   that is the II Law of (macroscopic) thermodynamics.      
   Note that 〈ex〉 ≥ e〈x〉 (Jensen’s inequality) 

•   there must exist trajectories with Wdis ≤ 0 (red tail) 
   to ensure 〈exp(-Wdis /kBT〉 = 1 -- transient violation      
   of II Law due to t-reversal invariance (Loschmidt); 

•   non-Gaussian P(W): W-cumulant generating function 
        ΔG =?= 〈W〉 - 〈σ2

W
 〉/2kBT 

   beyond standard fluctuation-dissipation theorem. 

 Brownian motors 



Experimental verification 

From the JE   

… for a finite number of experiments this estimate is often biased 

Fitted ΔG within a few kBT of best independent estimates   

•   Direct method: JE 



•   Direct method: Crooks FT 

slope=0.9(1) 

slope close to 1; x-intercept: ΔG(exp) ≈110 kBT 



•   Crossing method 

after subtracting entropic handle stretching 

less systematic error 



difficulties 

•  experimental determination of small systems, control       
   issues 

•   operative definition of work (inclusive vs exclusive) 

•   verification of FT equalities, statistics issues 



3 levels of description 

macroscopic 
thermodynamics 

statistical 
mechanics 

stochastic 
thermodynamics 

FT 

AEP 

stochastic 
energetics 



Conclusions 
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Brownian motors  
 from macro to micro scales 

scallops, 10-2m 
shell flaps, jets 

high Reynolds numbers 

R=avρ/η~100 

bacteria, 10-5m 

low Reynolds numbers R~10-4 

flagellum strokes 

corkscrew, v ∝ ω  

flexible oar, v ∝ ω2  



myosin, 10-8m 

power strokes: ATP hydrolysis, ATP→ADP+20kBT, efficiency ~50%; 
power from “fuel” comparable with power from/to environment 

Brownian motion: time to diffuse a particle length is a2/D, i.e. much 
shorter than the drift time a/v    —   D=kT/6πηa, v~4-5µm/s 

not a deterministic  
engine, rather a 
directed random walker 
and still  
a very efficient motor!! 
(Yanagida, 1999) 



Proof outline: 

1.  process protocol  λ(t):  0 → 1  over a time tf;  fixed path in system  
     parameter space; heat bath disconnected during evolution; 

2.  H(z,λ(t))  →  Hλ(z)  with  z ≡ (q,p); 

3.  z0 ≡ z(0) → z ≡ zλ(t)  deterministic trajectory; dW= λ′(t) ∂λHλ(z)dt 
     z0 ∈ ρ0(z0) ≡ Z0

-1 exp[-βH0]   →   ρ(z, t) = ρ0(z0)    [≠ ρ1(z) for t=tf] 
 (Liouville theorem);  

4.  〈exp(-βW)〉 =  ∫dz ρ(z, tf ) exp[- β ∫0tf  λ′(t) ∂λHλ(z) dt] = 

                         =   ∫dz ρ0(z0) exp[- β(H1- H0)] = 

                         =   Z1 Z0
-1 =  

                         =   exp(-βΔF) 

5.  Now add heat bath:   H(z,zr) = H(z) + Hres(zr) + hint(z,zr) and assume 
     hint(z,zr)  small 



After subtracting the contribution arising from the entropy loss due 
to the stretching of the molecular handles, ΔGhandle = 23.8 kcal/mol, 
and of the extended single-stranded RNA, ΔGssRNA = 23.7±1 kcal/
mol, we obtain ΔG0 = 37.2 ±1 kcal/mol (at 25°C, in 100 mM Tris-
HCl, pH 8.1, 1 mM EDTA), in excellent agreement with the result 
obtained using the Visual OMP by DNA Software, Inc. ΔG0 = 
38 kcal/mol (at 25° C, in 100 mM NaCl). 
Genetic Computer Group (or Wisconsin) package 

1 kBT  ~  0.6 kcal/mol at 25°C 



Experimental tests: Gallavotti Cohen FT 

•   In colloids: e.g., dragging micro-particles through water (Evans, 2004) 

•   In electrical circuits: more controllable dissipative system (Ciliberto, 2005) 

plastic bead  
in an optical trap 
at constant v 

pumped circuit:  
fewer biases,  
more trajectories  



Fluctuation th. #1: Gallavotti-Cohen (`95) 

•   time-reversal invariant SSS 
•   an external agent continuously produces heat by acting on the system;  heat 
   gets transferred to the bath. Sure, 〈S〉= 〈Q〉/T > 0, average total entropy  
   increase of system+bath in a time interval t 
•   system entropy production (rate): σ = Q/Tt  from system → bath, trajectory  
   dependent (fluctuates!) with t-dependent p.d. Pt(σ )  

SSS are more likely to deliver a certain amount of heat to the bath, σ > 0,  
than to absorb it from the bath, σ < 0.   

FD for steady-state systems (SSS): 



•    t → ∞  ‘means’  t >>  all relaxation time scales in the system; 

•   molecular motors can move by rectifying thermal fluctuations (ratchets),  
   while producing heat in average; 

•   Loschmidt vs Boltzmann (1876) 

   Q: if the microscopic law of mechanics are invariant under time-reversal,  
   how can you rule out entropy decreasing evolutions that violate the II law? 
   A: time-reversed trajectories do occur, but they get vanishingly rare  
   with system size. 

II law of thermodynamics recovered for macro-systems:  for σ → ∞ 

              Pt(σ )/ Pt(-σ ) → ∞  

heat absorption becomes insignificant! 



Fluctuation th. #2: Jarzynski equality (`97) 

•   n.e. process with protocol    X(t):  XA → XB    
   X control parameter; X(0) = XA  initial  equilibrium state; 
•   [system in contact with heat bath at temperature T ]; 
•   X(tf) = XB n.e. final state; equilibration follows for t → ∞  with X(t > tf) = XB  

ΔG free-energy difference between equilibrium states XA , XB ; 

〈…〉 average over repeated realizations of the same protocol X(t):  XA → XB  

J.E. 


