Fluctuations in Small Systems the case of single molecule experiments

Fabio Marchesoni, Università di Camerino, Italy

force \times distance \approx k_BT >> quantum scale

"I do not believe a word he is saying, but I am afraid that one day I will have to learn it" (Bob Silbey)

for an introduction, C. Bustamante et al, Physics Today, July 2005, 43-48

Single molecule experiments (after 1990)

- techniques to <u>measure forces</u> in the pN range (10⁻²-10³)pN, and <u>distances</u> in the nm range (nanodevices);
- with <u>high time resolution</u> to track the <u>trajectories</u> of single biomolecules;
- access to <u>new phenomena</u> in molecular and cellular biophysics → <u>new physical insight</u> in non-equilibrium (n.e.) statistical physics.

The physical problem

Purely mechanical models are too naïve

 energies involved in molecular processes are a <u>few k_BT</u> (at T=298K, 1 k_BT = 4.1pN·nm = 0.6kcal/mol) forces ~ 10pN distances ~ 1nm
 Ence scale: Brownian, 10fN: molecular motors, 10pN: folding (H-bond)

Force scale: Brownian, 10fN; molecular motors, 10pN; folding (H-bond), 100pN; covalent bond (1eV for 1Å), 1nN

- <u>thermal fluctuations</u> become extremely important as they determine the efficiency of the molecular motors;
- importance of <u>rare events</u> and large deviations from average behavior <u>a new thermodynamics</u>

Examples

kinesin "walking" along a microtubule, fueled by ATP hydrolysis transcription by RNA polymerase enzyme rectifies thermal noise

fuel: ATP \rightarrow ADP+20 k_BT; high efficiency: 40-60% despite pauses, arrests, backtracking events

Small systems

A. Mostly <u>steady state</u>

- net currents across (heat, electric, mass)
- dissipate energy constantly

Example: kinesin

ATP \rightarrow ADP + 20 k_BT 1 step: 8nm in 10-15ms work/step: 12 k_BT (avg. load)

efficiency: ~60% dissipated pwr.: 650 k_BT/s

B. Equation of state and fluctuation depend on the choice of (few) <u>control parameters</u>

in *small* systems <u>force-extension</u> <u>characteristics</u> curves not uniquely determined

C. Subjected to <u>non-equilibrium</u> transformations...

$$dU = \sum_{i} \left(\frac{\partial U}{\partial x_i} \right)_X dx_i + \left(\frac{\partial U}{\partial X} \right)_{\{x_i\}} dX = dQ + dW.$$

...according to a given protocol X(t): $X_i = 0 \rightarrow X_f$

X determines the thermodynamic state of the system

Force $F=F(X_{int}, X)$ is the fluctuating variable

Q <u>hard to measure</u> → [for <u>aperiodic</u> X(t)]

$$W=\int_0^{X_{\mathrm{f}}} dW=\int_0^{X_{\mathrm{f}}} F dX,$$

Importance of large and rare deviations respect to the average behavior:

How does RNA fold?

Single stranded RNA structures

U=uracil (thymine) basepairs with Adenine and also with Guanine

J. Liphardt et al, Science (2002)

- mechanical stretching of a single RNA molecule (20nm long), at <u>constant loading rate r</u> (below: r = 7.5pN/s)
- irreversible folding-unfolding cycles are <u>hysteretic</u> → <u>work is dissipated</u>

3μm

 linear contributions from the *entropy loss* due to the stretching of the molecular handles <u>and</u> of the *elastic stretching* of single-stranded RNA

P(W) exhibits negative "fat" tails

Fluctuation Theorems

- Λ_F(t): n.e. <u>forward</u> process λ_F(t): λ_A → λ_B; T constant;
 A: equilibrium <u>initial</u> state, t= t_i; B*: n.e. <u>final</u> state, t= t_f
- Λ_R(t): n.e. <u>reverse</u> process λ_R(t[∞]): λ_B → λ_A
 B: equilibrium <u>initial</u> state, t[∞] = t_i; A*: n.e. <u>final</u> state, t[∞] = t_f
- $\Delta G = G_B G_A$ free energy difference between equilibrium states A and B
- $\Lambda_{R}(t)$ is <u>time reversed</u> with respect to $\Lambda_{F}(t)$, i.e. $\Lambda_{R}(s) = \Lambda_{F}(t-s)$ for $0 \le s \le t$, with corresponding work p.d. $P_{F}(W)$ and $P_{R}(W)$

applies to cyclostationary protocols, too

The Jarzynski Equality (1997)

AG M Ais

Re-write Crooks' FT as

1

$$\begin{split} \mathsf{P}_{\mathsf{R}}(\mathsf{-W}) &= \mathsf{P}_{\mathsf{F}}(\mathsf{W}) \exp[-(\mathsf{W}\text{-}\Delta\mathsf{G})/\mathsf{k}_{\mathsf{B}}\mathsf{T}] \\ &= \mathsf{P}_{\mathsf{F}}(\mathsf{W}) \exp[-\mathsf{W}_{\mathsf{dis}}/\mathsf{k}_{\mathsf{B}}\mathsf{T}] \end{split}$$

and integrate

$$\left\langle \exp\left(-\frac{W_{\rm dis}}{k_B T}\right)\right\rangle = 1$$
 or

١

$$\exp\left(-\frac{\Delta G}{k_B T}\right) = \left\langle \exp\left(-\frac{W}{k_B T}\right) \right\rangle$$

The FT physics

- <u>free-energy</u> differences can be extracted from <u>nonequilibrium data;</u>
- ⟨W⟩ ≥ ΔG, or equivalently, ⟨W_{dis}⟩ ≥ 0, that is the II Law of (macroscopic) thermodynamics. Note that ⟨e^x⟩ ≥ e^{⟨x⟩} (Jensen's inequality)
- there <u>must</u> exist trajectories with $W_{dis} \le 0$ (red tail) to ensure $\langle exp(-W_{dis}/k_BT \rangle = 1 - \underline{transient violation}$ of II Law due to *t*-reversal invariance (Loschmidt);
- <u>non-Gaussian</u> P(W): *W-cumulant generating function* $\Delta G = ?= \langle W \rangle - \langle \sigma^2_W \rangle / 2k_BT$ beyond standard *fluctuation-dissipation theorem.*

 $\left\langle \exp\left(-\frac{W_{\text{dis}}}{k_{\text{D}}T}\right) \right\rangle = 1$

$$\frac{\Delta G}{k_B T} = -\ln\left\langle \exp\left(-\frac{W}{k_B T}\right)\right\rangle$$

Experimental verification

Direct method: JE

From the JE

rect method: JE

$$\Delta G = -k_B T \ln \left\langle \exp\left(-\frac{W}{k_B T}\right) \right\rangle_F$$

... for a finite number of experiments this estimate is often biased

Fitted ΔG within a few k_BT of best independent estimates

Direct method: Crooks FT

slope close to 1; x-intercept: $\Delta G^{(exp)} \approx 110 k_B T$

after subtracting entropic handle stretching

difficulties

experimental determination of small systems, control issues

• operative definition of work (inclusive vs exclusive)

verification of FT equalities, statistics issues

3 levels of description

Conclusions

- a <u>new</u> non-equilibrium thermodynamics of small systems
- more powerful tools to extract information from
 single molecule experiments
 SIS RNA junction
- application to <u>artificial</u> devices (possibly via *stochastic energetics*)

Brownian Motors

References

Reviews:

- 1. Single molecule manipulation
 - T. Strick et al, *Physics Today, Oct. 2001, 46-51*
- Introduction to fluctuation theorems
 Bustamante et al, <u>*Physics Today, July. 2005, 43-49</u>*</u>
- 3. F. Ritort, *Séminaire Poincaré* **2**, 193 (2003), available at http://arXiv.org/abs/cond-mat/0401311
- 4. D. J. Evans, D. J. Searles, Adv. Phys. 51, 1529 (2002)

Theorems:

- G. Gallavotti, E. G. D. Cohen, *Phys. Rev. Lett.* 74, 2694 (1995)
- C. Jarzynski, *Phys. Rev. Lett.* 78, 2690 (1997)
- G. E. Crooks, *Phys. Rev. E* 60, 2721 (1999)
- U. Seifert, *Phys. Rev. E* **95**, 040602 (2005)

Brownian motors

from macro to micro scales

bacteria, 10⁻⁵m

low Reynolds numbers $R \sim 10^{-4}$ flagellum strokes corkscrew, v $\propto \omega$ flexible oar, v $\propto \omega^2$

<u>myosin</u>, 10⁻⁸m

power strokes: ATP hydrolysis, ATP \rightarrow ADP+20k_BT, efficiency ~50%; power from "fuel" comparable with power from/to environment

Brownian motion: time to diffuse a particle length is a^2/D , i.e. much shorter than the drift time $a/v - D = kT/6\pi\eta a$, $v \sim 4-5\mu m/s$

not a deterministic engine, rather a directed random walker and still a very efficient motor!! (Yanagida, 1999)

Proof outline:

1. <u>process protocol</u> $\lambda(t): 0 \rightarrow 1$ over a time t_f; fixed path in system parameter space; <u>heat bath disconnected</u> during evolution;

2.
$$H(z,\lambda(t)) \rightarrow H_{\lambda}(z)$$
 with $z \equiv (q,p)$;

3. $z_0 \equiv z(0) \rightarrow z \equiv z_{\lambda}(t)$ deterministic trajectory; $dW = \lambda'(t) \partial_{\lambda}H_{\lambda}(z)dt$ $z_0 \in \rho_0(z_0) \equiv \mathbb{Z}_0^{-1} \exp[-\beta H_0] \rightarrow \rho(z, t) = \rho_0(z_0) \quad [\neq \rho_1(z) \text{ for } t=t_f]$ (Liouville theorem);

4.
$$\langle \exp(-\beta W) \rangle = \int dz \, \rho(z, t_f) \exp[-\beta \int_0^{t_f} \lambda'(t) \partial_\lambda H_\lambda(z) dt] =$$

$$= \int dz \, \rho_0(z_0) \exp[-\beta (H_1 - H_0)] =$$

$$= \mathbf{Z}_1 \, \mathbf{Z}_0^{-1} =$$

$$= \exp(-\beta \Delta F)$$

5. Now add <u>heat bath</u>: $H(z,z_r) = H(z) + H_{res}(z_r) + h_{int}(z,z_r)$ and assume $h_{int}(z,z_r) \underline{small}$

After subtracting the contribution arising from the entropy loss due to the stretching of the molecular handles, $\Delta G^{\text{handle}} = 23.8 \text{ kcal/mol}$, and of the extended single-stranded RNA, $\Delta G^{\text{ssRNA}} = 23.7 \pm 1 \text{ kcal/}$ mol, we obtain $\Delta G_0 = 37.2 \pm 1 \text{ kcal/mol}$ (at 25°C, in 100 mM Tris-HCI, pH 8.1, 1 mM EDTA), in excellent agreement with the result obtained using the Visual OMP by DNA Software, Inc. $\Delta G_0 = 38 \text{ kcal/mol}$ (at 25° C, in 100 mM NaCI).

Genetic Computer Group (or Wisconsin) package

 $1 k_B T \sim 0.6 \text{ kcal/mol at } 25^{\circ} \text{C}$

Experimental tests: Gallavotti Cohen FT

• In <u>colloids</u>: e.g., dragging micro-particles through water (Evans, 2004)

plastic bead in an optical trap at <u>constant v</u>

• In electrical circuits: more controllable dissipative system (Ciliberto, 2005)

pumped circuit: fewer biases, more trajectories

Fluctuation th. #1: Gallavotti-Cohen (`95)

FD for steady-state systems (SSS):

- time-reversal invariant SSS
- an <u>external agent</u> continuously produces heat by acting on the system; heat gets transferred to the bath. Sure, (S)= (Q)/T > 0, average total entropy increase of system+bath in a time interval t
- system entropy production (rate): $\sigma = Q/Tt$ from system \rightarrow bath, trajectory dependent (fluctuates!) with *t*-dependent p.d. $P_t(\sigma)$

$$\lim_{t\to\infty}\frac{k_{\rm B}}{t}\,\ln\left(\!\frac{P_t(\sigma)}{P_t(-\sigma)\!}\!\right) = \sigma.$$

SSS are more likely to deliver a certain amount of heat to the bath, $\sigma > 0$, than to absorb it from the bath, $\sigma < 0$.

II law of thermodynamics recovered for <u>macro</u>-systems: for $\sigma \rightarrow \infty$

 $P_t(\sigma)/P_t(-\sigma) \to \infty$

heat absorption becomes insignificant!

- $t \rightarrow \infty$ 'means' t >> all relaxation time scales in the system;
- molecular motors can move by rectifying thermal fluctuations (ratchets), while producing heat in average;
- Loschmidt vs Boltzmann (1876)

Q: if the microscopic law of mechanics are invariant under time-reversal, how can you rule out entropy decreasing evolutions that violate the II law? A: time-reversed trajectories do occur, but they get vanishingly rare with system size.

Fluctuation th. #2: Jarzynski equality (`97)

- n.e. process with protocol X(t): X_A → X_B
 X control parameter; X(0) = X_A initial equilibrium state;
- [system in contact with heat bath at temperature T];

J.E.

• $X(t_f) = X_B n.e.$ final state; equilibration follows for $t \rightarrow \infty$ with $X(t > t_f) = X_B$

$$\exp\!\left(\!-\frac{\Delta G}{k_{\rm B}T}\right) = \left\langle \exp\!\left(\!-\frac{W}{k_{\rm B}T}\right)\!\right\rangle\!,$$

 ΔG free-energy difference between <u>equilibrium</u> states X_A , X_B ;

 $\langle ... \rangle$ average over repeated realizations of the same protocol X(t): $X_A \rightarrow X_B$