
Radiation Harvesting

Antonio Moschitta

NiPS Summer School 2011
Energy Harvesting at micro and nanoscale



Outline
• Intro (usefulness, metrics, problems)
• LF EM Radiation Harvesting
• RF EM Radiation Harvesting
• Cockroft-Walton Voltage multipliers
• Solar Radiation, Photovoltaic
• Solar Radiation, nantenna



Intro
• Various forms of radiations may be collected and 

transduced into electric power
• Wireless sensor networks: energy harvesting may help 

increasing battery duration or even replace them entirely

Image source: [1]



Intro

• Wireless Sensor Networks: node power consumption

Typical state of the art MCU power 
consumption:
300-μA active current (1 MHz, 3 V)
0.5-μA standby current (LPM)



Intro
Wireless Sensor Networks: node power consumption
•  WSNs operate with a duty cycle β.
•  When active, node absorbs a power PON.

•  In sleep mode, a power PSLEEP << PON is absorbed.

•  In a time interval T, the average absorbed energy ET is

•  The average absorbed power PMEAN is:

•  Typical values for β : [10-3,10-2]
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Intro
Wireless Sensor Networks: node power consumption
•  1.5 V AA alcaline battery (3000 mAh).

•  When active, node absorbs 20 mA DC (PON=30 mW)

•  In sleep mode, node absorbs 10 nA DC (PSLEEP =15 nW).

•  With β =0.01 the average absorbed power PMEAN is:

•  With β =0.01 the battery duration is:
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Intro

Image source: [1]



Intro

Main metrics for renewable power generation/storage 
technologies: 
•  Power density (peak power), energy density, per mass/volume 
unit (Photovoltaic: 100 µW/cm3-100 mW/cm3, other non radiant 
sources are in the tens of µW/cm3 range)
•  Conversion/Transfer Efficiency



LF Radiation Harvesting
• Basics: LF harvesting often relies on inductive powering 

(Es: rechargeable tootbrushes, RFID)
• Magnetic coupling between a primary and a secondary coil
• Safe technology (Galvanic insulation)

Image source: [3]



LF Radiation Harvesting
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LF Radiation Harvesting
• Efficiency grows with Q factor of both coils (can exceed 

80%) and with mutual coupling k
• May require high currents in the primary
• Short range (near field), using resonant circuits helps 

increasing efficiency and range

Image source: [3]



RF Radiation Harvesting
• Basics
• Rectenna
• Cockroft-Walton multiplier



Basics
• Main idea: collect energy from RF waves.
• “Ad Hoc” RF sources (Es: RFID, military applications, 

satellite based power source).
• “Unintentional” sources (Radio or TV broadcasting, Cell 

phone base stations, solar radiation…).
• Italy: FM Radio, 98-108 MHz



Rectenna 
• Rectifying Antenna (rectenna): conceived by W. C. Brown 

at Raytheon, 1960's.
• Idea: a dipole antenna connected to a low barrier diode 

(typically Schottky)
• Note: Old AM receivers are precursors of rectennas 

(Antenna+rectifying diode+headphone)
• Usually Narrowband, omnidirectional (typically dipoles or 

half dipoles)
• Experiments since 60’s, 2.4 GHz ISM band preferred.

Image source: [4]



Rectenna 
• High power density directive powering @microwave 

frequencies.
• Both linear and circular polarization of the receiving 

antennas may be used, demonstrating efficiencies ranging 
from around 85-90% at lower microwave frequencies to 
around 60% at X-band (8-12 GHz) and around 40% at Ka-
band (26.5-40 GHz) [4].

Image source: [22]



Rectenna 

• Available power: low (microwatt). Expected power densities 
@ 50 meters from a typical base-station tower operating at 
880 and 1990 MHz, are typically around 10-4 mW/cm2. [4]

• The rectenna output power depends on the power flux 
density, frequency, incident angle of microwave, and 
rectifying circuit performance.

• Output voltage: low (mV)



Rectenna 
• Rectenna efficiency depends both on antenna and diode 

efficiencies.
• First scenario: incident plane wave at frequency f0, with 

power flux density S.
• The power PIN  collected by a lossless antenna perfectly 

aligned with the incoming plane wave is:

 
• where Aeff is the antenna effective area
• The power PRF at the antenna output is:

• where εR  is the antenna radiation efficiency (keeps into 
account conduction and dielectric losses)

effIN ASP ⋅=

effRRF ASP ⋅⋅= ε



Rectenna 

• Part of the available power is reflected back due to antenna-
diode mismatch loss ML.

• The remaining RF power is converted to DC power PDC, by 
the rectifying circuit with a diode efficiency εD:

• The efficiency η = PDC / PIN is given by:

• PDC may be measured at DC for a given load RL

RFLDDC PMP ⋅⋅= ε
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Rectenna 
• General case: various sources from various directions, in a 

frequency band [fL,fH].

• For a given frequency f0:

• NB: PDC is a nonlinear function of PIN and f!
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Rectenna 

Rectifying electronics issues
•Low barrier diode efficiency depends on:

– Matching to the antenna
• Lumped matching circuitry
• Matched antenna design
• Difficult to obtain for varying frequency!

– Diode bandwidth (dominated by junction capacitance)
– Diode nonlinearity (models needed, both low-signal and large signal 

analysis), affecting matching.
– Diode nonlinearity, introducing harmonics.

•Outside [Vb,VT] diode does not behave as a rectifier!

Image source: [5]



Rectenna 
• Overall diode efficiency:

Image source: [4,24]



Rectenna

• Multiple rectennas may be assembled into arrays
• Total power: lower  than the sum of individual powers
• Series connection less efficient than parallel connection

Image source: [6]



Cockroft-Walton Multiplier

• Antenna output voltage may be very low, about a very few 
hundreds of millivolts (when scavenging RF from 
commercial broadcasting).

• Usable voltage must exceed 1 V (low power )
• A single rectifying diode may be inefficient
• Transformers are bulky, with insufficient bandwidth (a few 

hundreds of MHz)



Cockroft-Walton Multiplier

• Cockroft-Walton multiplier: originally developed for high 
energy physics;

Image source: Wikipedia



Cockroft-Walton Multiplier

• Cockroft-Walton multiplies: originally developed for high 
energy physics;

• Uses a ladder network of capacitors and diodes.
• Easily to analyze with diode threshold model.

Image source: [7]



Cockroft-Walton Multiplier

• (a): full circuit
• (b): negative half wave equivalent circuit
• (c): positive halfwave equivalent circuit.
• Power scavenging requires low barrier voltage

Image source: [7]



Cockroft-Walton Multiplier

Image source: [7]



Cockroft-Walton Multiplier

• Several multipliers may be cascaded for higher multiplying 
factor

• Load insertion usually reduces output voltage with respect 
to open circuit conditions

• Diode power consumption and losses limit the number of 
stages

Image source: [7]



Solar Radiation, Photovoltaic
• Principle: quantum device, based on photoelectric effetc 

applied to semiconductors (bandgap about 1 eV). Photons 
with compatible energy induce formation of electron-hole 
couples. 

• Cell model: one diode or two diode based



Basics and PV Cell Modeling
• Theoretical Efficiency given by Shockley-Queisser  Limit: 

<30% single p-n junction, <55% 2-junctions, 86% 
asymptotic.

• Limiting factors: blackbody radiation, recombination, 
spectrum losses.

• Efficiency may be increased in several ways 
(Concentration, tandem cells, infrared capture, fluorescent 
down-conversion, impurities/intermediate band…) [23].

• May be connected into arrays (series: less efficient in 
presence of partial shading).

• Actual efficiency: about 20% single junction, 40% multi-
junction.



Rectenna and nantenna
• Nantenna: nanoscale rectantenna (nanoscopic rectifying 

antenna)
• Designed to collect energy of solar radiation
• Photovoltaic: based on corpuscolar nature of light
• Nantenna: based on wave nature of light

Image source: Wikipedia



Rectenna and nantenna
• Nantenna should collect efficiently radiations of 

wavelength comparable to its own size (claimed expected 
efficiency: 85%)

Image source: Wikipedia



Rectenna and nantenna
• Implementing an array of variously sized nantennas is 

potentially much easier than implementing an array of 
semiconductor alloys with various bandgaps.

Image source: Wikipedia



Rectenna and nantenna
• nantennas radiation diagram may be exploited to reduce 

tracking requirements.



Rectenna and nantenna
• Some nantenna open issues (deviation from rectantenna 

assumptions):
• Efficiency prediction is not fully theoretically established;
• Mostly surface current conduction due to skin effect (non 

ohmic material, increased resistance);

• Copper (σ≅1.68×10-8 Ω·m, µr ≅1) @200 THz:  δ≅4.6 nm
• Standard photolithography is not (yet…) mature for 

nanometer form factor (requires electron beam litography, 
more expensive).
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Rectenna and nantenna
• Some nantenna open issues (continued):
• Schottky diodes work satisfactorily up to 5 THz, 0.4-1.6 

µm wavelengths (maximum solar irradiance) correspond to 
187-750 THz.  Diode junction capacitance will reduce 
power conversion efficiency (THz require attoFarad 
capacitance);

• Metal Insulator Metal (MIM) tunneling diodes are 
currently being studied to increase bandwidth;

• Currently developed nantennas mostly work in the infrared 
(8-10 µm wavelengths), and perform much below the 
expected conversion efficiency.



Rectenna and nantenna
• Defense Advanced Research Project Agency (DARPA):
• Hybrid Photovoltaic/nantenna panel

Image source: [8]
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