ENERGY MANAGEMENT FOR HYBRID AUTONOMOUS TRANSCEIVERS

Francesco Orfei

Department of Physics, University of Perugia, Italy

francesco.orfei@nipslab.org

NiPS Summer School 2011 - Perugia - Italy - Aug. 1/6, 2011

Intro

- What are hybrid autonomous transceivers?
- The problem of the power supply and management
- Our approach: hybrid energy harvesting

General scheme

• Energy harvesting + energy storage + energy management

In detail

- Vibration harvesting: the nolinear approach
- The alternative source: solar energy
- Power conditioning
- Energy storage in the capacitors
- Power supervisioning
- A real application: HAT Hybrid Autonomous Transceiver
- Future perspectives

What are hybrid autonomous transceivers?

Hybrid autonomous transceivers are a class of self-powered battery-free transceivers in which the **source of power** is a combination of:

- piezoelectric harvester
- photovoltaic harvester
- thermoelectrics generator

- electromagnetic harvester
- radiofrequency harvester
- electrostatic harvester

What are hybrid autonomous transceivers?

What are hybrid autonomous transceivers?

The problem of the power supply and management

Noise in Physical Systems

NiPS Summer School 2011 - Perugia - Italy - Aug. 1/6, 2011

Our approach: hybrid energy harvesting

Why not to use two or more energy harvesting technologies at the same time?

Different technologies work under different environment conditions

If vibrations are not present, PV cells can be used to power the system

NiPS Summer School 2011 - Perugia - Italy - Aug. 1/6, 2011

Energy harvesting + energy storage + energy management

- Small enclosure: 60 x 35 x 25 mm
- 2 solar cells: 20 x 25 mm, Pmax = 8 mW @ 3,9 V
- 1 piezoelectric non-linear vibrations harvester
- 1 LDO voltage regulator: Vout = 3,3 Vdc, Iq = 3,2 μ A
- 1 high capacitance tantalum capacitor: 1000 μ F 6,3 V
- 1 NanoPower Supervisory Circuits

NiPS Laboratory Noise in Physical Systems

Energy harvesting + energy storage + energy management

Vibration harvesting: the nolinear approach

NIPS Laboratory

Noise in Physical Systems

Tip Mass \simeq 20 grams

(in the linear regime)

 $Fn \simeq 46 Hz$

Tip Mass (gram)	Fn (Hz)	Amplitude (g)	Open Circuit Voltage*		
0	275	0.25	4.1		
0	275	0.375	5.9		
0	275	0.5	7.6		
0	275	1	12.3		
1	175	0.25	7.6		
1	175	0.375	10.9		
1	175	0.5	13.6		
1	175	1	23.5		
2.4	140	0.25	10.9		
2.4	140	0.375	15.2		
2.4	140	0.5	18.8		
2.4	140	1	32		
4.8	105	0.25	15.9		
4.8	105	0.375	21.6		
4.8	105	0.5	28.1		
4.8	105	1	46.5		

* piezo wafers connected in series

NiPS Summer School 2011 - Perugia - Italy - Aug. 1/6, 2011

The alternative source: solar energy

SANYO AM-5610

Amorphous Solar Cell

Ratings at Ta = 25°C	gs at Ta = 2	25°C
-----------------------------	---------------------	------

Decemeter	Symbol	Conditions	Ratings			Linit
Parameter			min	typ	max	Unit
Open Circuit Voltage	Voc	SS 50kLx		5.1		V
Short Circuit Current	Isc	SS 50kLx		2.4		mA
Operating Voltage & Operating Current	lope	SS 50kLx, Vope=3.0V	1.7			mA
		SS 50kLx, Vope=3.3V		2.3		mA
		AM-1.5, 100mW/cm ² , Vope=3.3V		5.1		mA
Maximum Output	Pmax	SS 50kLx, Vop=3.9V, Iop=2.2mA		8		mW
(Reference Value)		AM-1.5, 100mW/cm ² , Vop=3.9V, lop=4.6mA		18		mW
Operating Temperature	Topr				-10 to +60	°C
Storage Temperature	Tstg				-20 to +70	°C

NiPS Laboratory

SS: Solar Simulator

Power conditioning

Voltage Regulator

TI TPS71533

- 2,5 V minimum input voltage
- 24 V Maximum input Voltage
- Vout = 3,3 V
- lout = 50 mA max
- Low 3.2 µA quiescent current
- Dropout voltage, typically, 415 mV at 50 mA of load current

<u>Voltage supervisor</u>

- Supply Current: 220 nA (typical)
- Threshold voltage: 2,25 V
- Typical hysteresis voltage: 40 mV
- Power-On Reset Generator With Selectable Delay Time: 10 ms or 200 ms
- Push/Pull active-low RESET Output
- Supply voltage: 1,6 6 V

Power conditioning

NiPS Summer School 2011 – Perugia – Italy – Aug. 1/6, 2011

Power conditioning

Energy storage in the capacitors

VISHAY

Tantalum capacitors exhibit very low electrical leakage (high leakage resistance). They will retain a charge for a long time.

597D

Vishay Sprague

Solid Tantalum Chip Capacitors TANTAMOUNT[®], Ultra-Low ESR, Conformal Coated, Maximum CV

PERFORMANCE CHARACTERISTICS

Operating Temperature: - 55 °C to + 85 °C (To + 125 °C with voltage derating) **Note:** Refer to doc. 40088

NIPS Laboratory

Noise in Physical Systems

FEATURES

- New case size offerings
- Case profiles: E case (4 mm) and R case (3.6 mm)
- Low profile case: V case (2 mm)
- Terminations: Tin (2) standard
- Extremely low ESR
- Ripple current up to 4.1 A
- Compliant to RoHS directive 2002/95/EC

Capacitance Range: $10 \ \mu F$ to $1500 \ \mu F$ Capacitance Tolerance: $\pm 10 \ \%$, $\pm 20 \ \%$ standard Voltage Rating: 4 WVDC to 63 WVDC

ROHS*

Energy storage in the capacitors

NiPS Summer School 2011 – Perugia – Italy – Aug. 1/6, 2011

Energy storage in the capacitors

Power supervisioning

NiPS Summer School 2011 – Perugia – Italy – Aug. 1/6, 2011

Power supervisioning

NiPS Summer School 2011 – Perugia – Italy – Aug. 1/6, 2011

A real application: HAT – Hybrid Autonomous Transceiver

Wisepower presents HAT

(Hybrid Autonomous Transceiver for automotive applications)

HATs are energetically autonomous devices that can be associated with a wide variety of sensors in order to measure and transmit physical quantities to a central control unit.

This video can be seen on Wisepower S.r.l. website: http://www.wisepower.it/HAT

Future perspectives

- We need to reduce the size of the system
- Rectification: better efficiency in AC/DC conversion (lower threshold voltage diodes? new converter?)
- Power management circuitry: need integration, now it's made with off-the-shelf components
- Voltage regulator: reduce the dissipated power and the minimum operating voltage
- Energy storage: we need to increase the capacity and reduce the losses

Thanks for your attention

