

Energy harvesting in nanoelectronic devices

Lukas Worschech

Technische Physik, Universität Würzburg, Germany

Lukas Worschech, NiPS summer school 2011, Perugia, 01.-05.08.2011

Julius-Maximilians-UNIVERSITAT Energy harvesting with nanoelectronics WÜRZBURG

Lukas Worschech, NiPS summer school 2011, Perugia, 01.-05.08.2011

►V_w

Outline

- Nanoelectronic semiconductor electronic devices
 - Technology
 - Nonlinear nanoelectronic transport
 - Magnetic field asymmetry in quantum wire
 - SR in a YBS as B field sensor
 - Y-branch as logic gate and GHz rectifier
 - Logic stochastic resonance in RTDs

- Electronics: frequencies Hz THz
- Optoelectronics: wavelengths 0.2 100 μm

• Transistors and memories

Combination of different semiconductors with atomic precision
 Growth techniques: e.g. Molecular beam epitaxy (MBE)

☐ Modulation-doped GaAs/AlGaAs heterostruktur (HEMT)
 ☐ Mean free path: ~10µms @ 4,2K / 50 – 200nm @ RT

- □ Top-down route: lithography, etching,...
- □ Bottom-up route: self-assembly, seeded growth,...

Different geometries: wires, dots, rings, splitters...

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Characteristic lengths

De Broglie wavelength:

$$l_{deBroglie} = h / p$$

- Fermi wavelength: $l_F = l_{deBroglie} \mid_{E=E_F}$
- Mean free path:

$$l_m = v \tau = \frac{p}{m} \tau = \frac{\hbar k}{e} \frac{e \tau}{m} = \frac{\hbar k}{e} \mu$$

• Phase coherence length: $l_{\phi} = h / \sqrt{2mkT}$

 Conductance quantization in 1D wires

$$I_{2T} = I_{L \to R} + I_{R \to L} =$$

$$\frac{2e}{h} \sum_{\alpha} \int dE \sqrt{E} * \frac{1}{\sqrt{E}} * \frac{f^L - f^R}{D_{1D}} * T_{\alpha}$$

$$G = I/V = \frac{2e^2}{h} \sum_{\alpha} T_{\alpha}$$

 Multi-terminal conductor: Landauer-Büttiker formula

$$I_i = \frac{2e}{h} \left[\mu_i - \sum_j T_{ij} \mu_j \right]$$

UNIVERSITÄT What is nano? A comparison: metals vs semiconductor

Julius-Maximilians-

WÜRZBURG

Semiconductor: 2 dimensional electron gas (2DEG) $n = 3.0 \times 10^{11}/cm^2$ $I_{\rm F}$ = 46 nm, E_F = 11 meV $I_m \sim 1-100 \ \mu m \ T < 4 \ K$ *I_φ*~ 1-100 μm

Electron wave propagation: each occupied subband contributes with 2e²/h to the conductance → conductance quantization

Outline

- Nanoelectronic semiconductor electronic devices
 - Technology
 - Nonlinear nanoelectronic transport
 - Magnetic field asymmetry in quantum wire
 - SR in a YBS as B field sensor
 - Y-branch as logic gate and GHz rectifier
 - Logic stochastic resonance in RTDs

Lukas Worschech, NiPS summer school 2011, Perugia, 01.-05.08.2011

Outline

- Nanoelectronic semiconductor electronic devices
 - Technology
 - Nonlinear nanoelectronic transport
 - Magnetic field asymmetry in quantum wire
 - SR in a YBS as B field sensor
 - Y-branch as logic gate and GHz rectifier
 - Logic stochastic resonance in RTDs

UNIVERSITÄT Stochastic resonance

Volume 88, Number 3

PHYSICAL REVIEW LETTERS

21 JANUARY 2002

- SR: weak signals can be amplified by fluctuations
- SR conditions
 - non-linear system (threshold)
 - Subthreshold signal
 - noise
- SR was introduced as model for explanation of the periodic ocurrence of ice ages: Benzi, Parisi, Sutera, Vulpiani

Abrupt Glacial Climate Changes due to Stochastic Resonance

Andrey Ganopolski and Stefan Rahmstorf* Potsdam Institute for Climate Impact Research, Box 601203, 14412 Potsdam, Germany (Received 5 July 2001; published 4 January 2002)

-

Large D

Channel

Lukas Worschech, NiPS summer school 2011, Perugia, 01.-05.08.2011

◆V_{gate}

Channel

Small D

Channel-Gate-Feedback

→V_{gate}

induced Dynamic D

depends on the bias voltage γ

 \Box YBS as amplifier and rectier \rightarrow logic operation

WÜRZBURG SR: Working principle

Vgr

 $\rm QV_{bias}$

 V_{bg}

• self-gating leads to a bistable transfer characteristic

Julius-Maximilians-

- the input and the working point voltages were set to bistable switching controlled by noise
- all measurements @ 20K

$$\delta V_g = 1.3mV$$

V_I c

Vg

V_wp

At f = 1 Hz the noise dynamics follow directly the frequency of the external input forcing and a maximum synchronization is found.

For the unmodulated system with f = 0 Hz the residence time distribution decays exponentially with the inverse of the Kramer's rate

Recording SR: Residence Time

Time matching condition of SR: $T_{\omega} = 2T_{K}$

Julius-Maximilians-

UNIVERSITÄT

• For f < f_{SR} the residence time distribution is strongly controlled by the noise

• For f > f_{SR} odd multiples of the periodic forcing T_{ω} occur:

$$T_n = (2n-1)T_\omega / 2$$

At the optimum frequency f = 1 Hz the residence time distribution is almost perfectly restricted to the first peak.

The time scale condition of SR is fulfilled by tuning solely the frequency of the periodic forcing.

Application: Magnetic field sensor

Set the detector in the strongly noise activated regime
Magnetic field applied perpendicular to the motion of electrons either in or out of the plane

Julius-Maximilians-

WÜRZBURG

$$T_{H,L} = \frac{1}{n_{H,L}} \sum_{i=1}^{n_{H,L}} T_{H_i,L_i}$$

 V_{br} decreases down to a magnetic field threshold B_{th}
 Transitions between the two states occur between ΔB

The magnetic-field induced switching is associated with a scattering asymmetry at the boundaries

UNIVERSITÄT WÜRZBURG Application: Magnetic field sensor

• Output is a linear function of B around $\Delta T = 0$ s

• Target signal independent sensitivity

$$\Delta T(B) = T_0 - cB$$

$$S(B) = \frac{\partial \Delta T}{\partial B} = c$$

Outline

- Nanoelectronic semiconductor electronic devices
 - Technology
 - Nonlinear nanoelectronic transport
 - Magnetic field asymmetry in quantum wire
 - SR in a YBS as B field sensor
 - Y-branch as logic gate and GHz rectifier
 - Logic stochastic resonance in RTDs

Rectification due to junctions:

- pn-junction
- Metal-semiconductor junction

Y-branch junction: no geometrical asymmetry!

Lukas Worschech, NiPS summer school 2011, Perugia, 01.-05.08.2011

Julius-Maximilians-

WÜRZBURG YBS nonlinearity used for a compact adder

Half-Adder: binary addition with carry bit

Julius-Maximilians-

Nanoelectronic Half-Adder

- planar Half-Adder is based on ballistic Y-junctions
- Inputs: x and y
- Outputs: c and z
- Working point: s
- Control: v

L. Worschech et al., Appl. Phys. Lett. 83, 2462 (2003)

Model

control of V_z via V_c :

- a) Injection of electrons
- b) Gating

No external gate!

 \Rightarrow Self induced switching

- Self switching \Rightarrow N-shaped V_z (V_c)-characteristics
- Definition of the working point via V_s

Microwave rectification: energy harvesting

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

ST ballistic cavity
A. N. Jordan,
Markus Büttiker,
PRB 2009
$$c \sim \frac{1}{2} \frac{e}{\mu_F}$$
• with $V = V_{\sim} \times \sin(\frac{f_1}{2\pi}t)$
• $V_s = \frac{c}{2}V_{\sim}^2 - \frac{c}{2}V_{\sim}^2 \times \cos(\frac{2f_1}{2\pi}t)$
frequency doubling and dc current

High Frequency Setup

Frequency doubling

 $f_{2} = 100 \text{ MHz}$

UNIVERSITÄT Microwave generates a DC current

Outline

- Nanoelectronic semiconductor electronic devices
 - Technology
 - Nonlinear nanoelectronic transport
 - Magnetic field asymmetry in quantum wire
 - SR in a YBS as B field sensor
 - Y-branch as logic gate and GHz rectifier
 - Logic stochastic resonance in RTDs

• fast operation ~THz

Julius-Maximilians-

WÜRZBURG

- negative differential resistance
- ballistic operation at room temperature

Lukas Worschech, NiPS summer school 2011, Perugia, 01.-05.08.2011

Logic operation with RTD mesas

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

No thermal transconductance limit \rightarrow ultra small switching voltages

 $V_1 = V_2 = 0 \text{ mV} == \text{Log. input } I = I_1 + I_2 = 0 + 0 = 0$

Lukas Worschech, NiPS summer school 2011, Perugia, 01.-05.08.2011

 $V_1 = 0,2 V_2 = 2,0 \text{ mV} == \text{Log. input I} = I_1 + I_2 = 1 + 0 = 0 + 1 = 1$

 $V_1 = V_2 = 2 \text{ mV} == \text{Log. input } I = I_1 + I_2 = 1 + 1 = 2$

Lukas Worschech, NiPS summer school 2011, Perugia, 01.-05.08.2011

I transition from NOR to NAND opertation for amplitude changes smaller than 1 mV

Murali, K., Sinha, S., Ditto, W., Bulsara, A. Phys. Rev. Lett. **102**, 104101 (2009).

Murali, K., Rajamohamed, I., Sinha, S., Ditto, W., and Bulsara, A., Appl. Phys. Lett. 95, 194102 (2009).

L. W., F. Hartmann, T. Y. Kim, S. Höfling, M. Kamp, A. Forchel, J. Ahopelto, 21. Neri, A. Dari, L. Gammaitoni, APL 2010

Summary

- Introduction into different nanoelectronic devices
- Nonlinear transport: rectification, bistable switching
- Noise-induced switching, logic stochastic resonance
- Routes for energy harvesting in nanoelectronics

UNIVERSITÄT WÜRZBURG For important contributions many thanks to

<u>Transport:</u> F. Hartmann, S. Kremling, S. Göpfert, A. Dari, L. Gammaitoni

<u>Technology:</u> M. Emmerling, S. Kuhn, T. Steinl, G. Heller, M. Kamp

<u>III-V samples:</u> C. Schneider, S. Höfling, A. Forchel

NANOPOWER

Support via EU: SUBTLE & NANOPOWER SUB KT LOW ENERGY TRANSISTORS AND SENSORS NANO POWER

Many thanks for your attention!