

Summer School: Energy Harvesting at micro and nanoscale, NiPS Workshop: Noise in dynamical systems at the micro and nanoscale

🛌 La Tenuta dei Ciclamini, Avigliano Umbro (TR) - Italy

Thermal Energy Harvesting for Low-Power Autonomous Sensors

Simone Dalola, Vittorio Ferrari, Daniele Marioli University of Brescia - Italy Department of Information Engineering

simone.dalola@ing.unibs.it

Introduction Extensive diffusion of sensing nodes (automotive, automation, entertainment, environment monitoring, security systems,...) Size Number of nodes Price Limiting factor: **power supply** Standard power supply Energy harvesting battery ✓ Solar energy rechargeable battery ✓ Mechanical vibrations Environment fuel cells ✓ Heat ✓ … •

Simone Dalola Thermal Energy Harvesting for Low-Power Autonomous Sensors

Energy from heat

Thermal gradients $\Delta T = T_h - T_c$

Temperature time-variations

Thermoelectric conversion

 $V_g \propto \Delta T$

$\frac{\partial T}{\partial t}$

Pyroelectric conversion

Simone Dalola

Thermal Energy Harvesting for Low-Power Autonomous Sensors

Thermoelectric effects

$$V_g = \alpha_{a,b} \left(T_h - T_c \right) = \alpha_{a,b} \Delta T$$

α_{a,b}: Seebeck coefficient
 f.e.m. proportional to ΔT

- reversible effect

Thermocouple/thermogenerator

Microdevice

Cooling device

Micromachining device

Simone Dalola

Thermal Energy Harvesting for Low-Power Autonomous Sensors

Thermoelectric generators (TEG)

- Development of materials
- Design of micromachined devices

www.micropelt.com

- Investigate of the feasibility of micromachined thermoelectric generators for energy harvesting application using really available MEMS technologies
 - Technology
 - Available thermoelectric materials for fabrication process
 - Structural configuration \rightarrow planar thermocouples

- At microscale can be difficult to apply or keep thermal gradients
- The idea is to use thermal gradient in the MEMS due to heat flow in elements with different thermal resistances

Simone Dalola Thermal Energy Harvesting for Low-Power Autonomous Sensors

- Planar thermocouple made in polysilicon - aluminum
 - 500 μm x 50 μm
 - α_{a,b} ≈ 100µV/°C
 - R= 320 Ω
- Two arrays of thermocouples:
 - External: 300 elements (75x4)
 - Internal: 160 elements (40x4)
- Four polysilicon resistors for:
 - Heating
 - Temperature detection
- Electrical resistance:
 - R_{ext} : 96 k Ω
 - R_{int}: 51 kΩ
- Central hole (0.5 mm x 0.5 mm)

• FEM simulation of the behaviour of MEMS

• $T_h = 80^{\circ}C$:

Simone Dalola

• FEM simulation of the behaviour of MEMS

Simone Dalola

Thermal Energy Harvesting for Low-Power Autonomous Sensors

COMSOL

• FEM simulation of the behaviour of MEMS

Simone Dalola

Thermal Energy Harvesting for Low-Power Autonomous Sensors

COMSOL

Pyroelectric effect

 Property of some dielectric materials with a polar point symmetry which exhibit a spontaneous electrical polarization that is a function of temperature.
 A time variation of the temperature causes a correspondent variation in the induced charge, which develops a current if contacting electrodes are placed on the material faces normal to the polar axis.

$$I_P = \frac{\partial Q}{\partial t} = S\lambda \frac{\partial T}{\partial t}$$

S: Electrode area
λ: Pyroelectric coefficient

Thermal Energy Harvesting for Low-Power Autonomous Sensors

Energy harvesting from temperature fluctuations

Simone Dalola

Thermal Energy Harvesting for Low-Power Autonomous Sensors

Fabrication of PZT pyroelectric elements

Realized devices

S. Dalola et at. Proc. Eurosensors XXIV, September 5-8, 2010, Linz, Austria

Simone Dalola

Thermal Energy Harvesting for Low-Power Autonomous Sensors

- Thermal profile applied by means of
 Peltier cell
- Temperature T of the PZT layer estimated by taking the average between the temperatures T₁ and T₂
- Measurement of current I_P

Thermal Energy Harvesting for Low-Power Autonomous Sensors

Simone Dalola

Thermal Energy Harvesting for Low-Power Autonomous Sensors

- Thermal profile applied by means of
 Peltier cell
- Temperature T of the PZT layer estimated by taking the average between the temperatures T₁ and T₂
- Measurement of current I_P

Sample ID	C _P [nF]	R _P [ΜΩ]	Experimental pyroelectric coefficient [C/(m ² °C]
1	0.92	217	1.1.10-4
2	0.42	411	1.8.1.0-4
3	0.36	973	2.1.10-4
4	37.75	3.4	0.5.10-4

Simone Dalola

Thermal Energy Harvesting for Low-Power Autonomous Sensors

The pyroelectric current need to be rectified

- Full-wave bridge rectifier
- Schenkel doubler

Voltage across a 10 µF storage capacitor for full-wave bridge and Schenkel doubler for sample #4 excited with a sinusoidal temperature rate of 1.8 °C/s peak

The pyroelectric current need to be rectified

- Full-wave bridge rectifier
- Schenkel doubler

Experimental results demonstrate that the harvested energy can be compatible with use in autonomous sensors working in low-duty-cycle switched-supply mode for measurement and transmission operations

Conclusions

- Two different principles for thermal energy harvesting:
 - Thermoelectric effect (Seebeck)
 - Spatial thermal gradient ΔT
 - Pyroelectrical effect
 - Temperature time-variation dT/dt

 Investigate the feasibility of micromachined thermoelectric generators for energy harvesting application using really available MEMS technologies

 Design, fabrication and characterization of thick-film PZT pyroelectric devices as energy harvesting sources able to power autonomous sensors

Simone Dalola

Thermal Energy Harvesting for Low-Power Autonomous Sensors

Thank you for your attention