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Introduction

Extensive diffusion of sensing nodes (automotive, automation, 
entertainment, environment monitoring, security systems,…)

Size

Price
Number of nodes

Limiting factor: power supplyLimiting factor: power supply

Energy harvesting

Solar energy

Mechanical vibrations

Heat

…

EnvironmentEnvironment

Standard power supply
• battery 

• rechargeable battery

• fuel cells

• ….
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Energy from heat
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Thermoelectric effects

Seebeck effect (1821) ( ) TΔ=−= ba,chba,g αTTαV
0

VVgg
αa,b: Seebeck coefficient
f.e.m. proportional to ΔT
reversible effect
Thermocouple/thermogenerator

Th

Tc

a b

Cooling device

Microdevice

Micromachining device
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Thermoelectric generators (TEG)

• Development of materials
• Design of micromachined devices 

• Investigate of the feasibility of micromachined thermoelectric 
generators for energy harvesting application using really 
available MEMS technologies
– Technology
– Available thermoelectric materials for fabrication process
– Structural configuration → planar thermocouples

www.micropelt.com
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Design of a MEMS TEG

• At microscale can be difficult to apply or keep thermal 
gradients

• The idea is to use thermal gradient in the MEMS due to heat 
flow in elements with different thermal resistances   

Q Q
Thermal gradient

Th

Thermocouples air convective flow 
or forced flow
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Design of a MEMS TEG
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Design of a MEMS TEG

• Planar thermocouple made in             
polysilicon - aluminum
– 500 μm x 50 μm
– αa,b ≈ 100µV/°C
– R= 320 Ω

7mm

7m
m• Two arrays of thermocouples:

– External: 300 elements (75x4)
– Internal: 160 elements (40x4)

• Four polysilicon resistors for:
– Heating
– Temperature detection

• Electrical resistance:
– Rext: 96 kΩ
– Rint: 51 kΩ

• Central hole (0.5 mm x 0.5 mm) 
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Design of a MEMS TEG

• FEM simulation of the behaviour of MEMS
• Th = 80°C:
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Design of a MEMS TEG

• FEM simulation of the behaviour of MEMS
• Th = 80°C:

ΔText ≈ 350°C/m*500μm ≈ 0.17 °C → Vg= Nα ΔT ≈ 5.1 mV
ΔTint ≈ 200°C/m*500μm ≈ 0.10 °C → Vg= Nα ΔT ≈ 1.6 mV



Simone Dalola 11/24Thermal Energy Harvesting for Low-Power Autonomous Sensors

Design of a MEMS TEG

• FEM simulation of the behaviour of MEMS
• Th = 80°C:

ΔText ≈ 350°C/m*500μm ≈ 0.17 °C → Vg= Nα ΔT ≈ 5.1 mV
ΔTint ≈ 200°C/m*500μm ≈ 0.10 °C → Vg= Nα ΔT ≈ 1.6 mV
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Pyroelectric effect

- - - - - - - - - - - - - - - - - - - - - - - - - -

+ + + + + + + + + + + + + + + + + + + +
Property of some dielectric materials with 

a polar point symmetry which exhibit a 
spontaneous electrical polarization that is a 
function of temperature.

A time variation of the temperature causes 
a correspondent variation in the induced 
charge, which develops a current if 
contacting electrodes are placed on the 
material faces normal to the polar axis. 
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• S: Electrode area
• λ: Pyroelectric coefficient

.

W IPT Vp
Rp CpRT CT

Thermal model Electric model

A
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Energy harvesting from temperature fluctuations

• Low power generation

• Low conversion efficiency

• Temperature fluctuations

• Low cost

• A lot of thermal sources

Estimation:

S= 10 cm2

λ= 10-4 Cm2/°C

dT/dt= 10 °C/s

I= 1 μA

Infrared 
motion 

detector
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Fabrication of PZT pyroelectric elements

+
-

1) Random orientation of dipoles
2) Epol: Orientation of the dipoles

3) Residual polarization

FerroelectricFerroelectric
PZTPZT

PiezoelectricPiezoelectric

PyroelectricPyroelectric

Fabricated in thick-film technology on alumina 
substrate:
• screen printing of a 10 μm layer of PdAg for the bottom 
electrode, drying at 150 °C and firing at 950 °C;
• screen printing of a layer of ferroelectric paste, 
prepared dissolving a PZT powder with a ratio 4:1 in a 
mixture of terpineol (96 %) and ethyl cellulose (4 %), 
drying at 150 °C and firing at 950 °C; 
• deposition of top electrode in the same way as the 
bottom electrode; 
• poling of the PZT with a field of 4 MV/m at 150 °C.

Alumina

PZT
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Realized devices

Sample ID Surface S
[mm2]

Thickness
[µm]

1 28 80
2 28 180
3 28 200
4 1600 100

Sample ID Surface S
[mm2]

Thickness
[µm]

1 28 80
2 28 180
3 28 200
4 1600 100 

40 mm 

40
 m

m
 

6 mm 

samples 1÷3

samples 4

S. Dalola et at. Proc. Eurosensors XXIV, September 5-8, 2010, Linz, Austria
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Characterization of pyroelectric samples

VOUT 

Temperature 
Sensor T1 

R 

IP 
 

 

Alumina Substrate 

PZT

 

Peltier Cell 

Temperature 
Sensor T2 

Peltier 
driver 

-

+

• Thermal profile applied by means of 
Peltier cell

• Temperature T of the PZT layer 
estimated by taking the average 
between the temperatures T1 and T2

• Measurement of current IP
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Characterization of pyroelectric samples
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• Thermal profile applied by means of 
Peltier cell

• Temperature T of the PZT layer 
estimated by taking the average 
between the temperatures T1 and T2

• Measurement of current IP

Characterization of pyroelectric samples
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Characterization of pyroelectric samples
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Characterization of pyroelectric samples

VOUT 
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• Thermal profile applied by means of 
Peltier cell

• Temperature T of the PZT layer 
estimated by taking the average 
between the temperatures T1 and T2

• Measurement of current IP

Sample ID CP
[nF]

RP
[MΩ]

Experimental pyroelectric 
coefficient
[C/(m2°C]

1 0.92 217 1.1·10-4

2 0.42 411 1.8·1.0-4

3 0.36 973 2.1·10-4

4 37.75 3.4 0.5·10-4
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Characterization of pyroelectric samples

The pyroelectric current 
need to be rectified

• Full-wave bridge rectifier
• Schenkel doubler

Voltage across a 10 μF storage capacitor for full-wave bridge 
and Schenkel doubler for sample #4 excited with a sinusoidal 

temperature rate of 1.8 °C/s peak
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Characterization of pyroelectric samples

The pyroelectric current 
need to be rectified

• Full-wave bridge rectifier
• Schenkel doubler

Voltage across a 10 μF storage capacitor for full-wave bridge 
and Schenkel doubler for sample #4 excited with a sinusoidal 

temperature rate of 1.8 °C/s peak
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Experimental results 
demonstrate that the 

harvested energy can be 
compatible with use in 
autonomous sensors 

working in low-duty-cycle 
switched-supply mode for 

measurement and 
transmission operations
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Conclusions

• Two different principles for thermal energy harvesting: 
– Thermoelectric effect (Seebeck)

• Spatial thermal gradient ΔT
– Pyroelectrical effect

• Temperature time-variation dT/dt

• Investigate the feasibility of micromachined thermoelectric 
generators for energy harvesting application using 
really available MEMS technologies

• Design, fabrication and characterization of thick-film
PZT pyroelectric devices as energy harvesting
sources able to power autonomous sensors
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