17'20 Ju‘y 2018 *****
NiPS Summer School 2018 Lo
University of Perugia, Italy

* 4 Kk

Co-Funded by the H2020 Framework
Programme of the European Union

Energy aware transprecision computing
FPGA programming using arbitrary precision data-types

- = IBM Research - Zurich
Yl o i =
Open Transpre0|8|on Computing ER====1

I T .V _®

© 2017 OPRECOMP - http://oprecomp.eu

' /7 . i Dionysios Diamantopoulos

o,
Py {
J

W

Disclaimer

$
Yy

The views and opinions expressed in this presentation are those of the author
and do not necessarily reflect the official policy or position of IBM.

© 2017 OPRECOMP - http://oprecomp.eu

The “Dark Silicon” era

Node 45nm 22nm 11nm
#Transistors scaling x4 x16
Peak Freq. scaling 1.6 2.4
Power scaling: §
@45nm freq 2/ 1/3 52
@peak freq 2/3 sg
— §
i
Exploitable ¥
silicon 69
&

At 11nm, more than 91% of silicon area is “dark”.
power = (power 1 transistor) x (#transistors used)

0

e Won't be able to use all EE Times

transistors simultaneously
® Serious problem for many-cores... el eilstimo R

on a chip

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

A look into the next 15 years

-7.9X

Jul

4.5
4.0
3.5
3.0
25
2.0
1.5
1.0
0.5
0.0

CPU Clock Frequency CPU Throughput

We are here We are here

2017

4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00

0.53 0.50
0.00 '-e'_ lﬁ U.£5

2019 2021 2024 2027 2030 2033 2017 2019 2021 2024 2027 2030 2033
——fmax of a single CPU core at Vdd (GHz)

4.2
3.86

.7

P
U.a

2
3

60:5F—= 0.48

P
un
P

——CPU SiP throughput at fmax (TFLOPS/sec)

——favg at constant power density and Vdd (GHz) ——CPU SiP throughput at constant power density (TFLOPS/sec)

Source: The International Roadmap for Devices and Systems: 2017

Trends in HPC systems: Performance

Slow-down in performance growth since 2013 goes hand in hand with
Longer system usage (~2x) and

Concentration of capabilities at the top (relatively larger top systems)

PERFORMANCE DEVELOPMENT 500 AVERAGE SYSTEM AGE 500

10 Eflop/ Jun#ﬂﬂ

op/s 121 EFlop/s 75
1 Eflop/s v 122 PElop/s
100 Pflop/s = 20
10 Pflop/s
1 Pflop/s 716 TFlop/s 15
100 Tflop/s ;
10 Tflop/s e 10 %&%M‘ 7.6 month
1 Tflop/s 173 {} s LN
100 Gflop/s
10 Glop/s | 227 GFlop/s June 2008 0
1 Gflop/s PRI TIPS PO DD
1o | 122 MElop/s SEN A S g

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Source: top500.0rg, 2018
Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation p g

End of technology scaling
Ten years of IBM SOI Technology - Challenges:
Leakage current
EUV lithography
Low yield
High cost

- IBM’s roadmap for 14nm, 10nm and 7nm

m—— EUV +
O,
S 39 Gen. FINFET

B 2™ Gen. FinFET + SAC
+ SITBEOL

SOI FinFET with 3" Gen. HiK
+ Hi-K e-DRAM with FIN

2™ Gen. HiK Gate
+ SOl Hi-K eDRAM w! Epi Plate

High-K gate dielectric on SOI
"/ > 32 nm + SOl eDRAM with Hi-K trench
SOl eDRAM +
/> 45 nm Immersion litho +
|- Ultra Low-k metal dielectrics
Advanced Strained Silicon
' > SR (DL + SOI e-SiGe)
[
P > 90 nm Low-k dielectrics + DSL
[=
Gen 182H/S
130/180 nm [

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Generations of Technology Leadership

Cost per transistor rising —
historic first

A “reasonably complex” SoC costs :
$30 million at 28nm
$271 million at 7nm

$500 million at 5nm

- Gartner Research, semiengineering.com, 2016
6.4

Cost per Million Gates
(Cents)

90 16/14

° Technéclogy Node (nm) “

Standard numerical formats and their hardware requirements

Nonzero absolute range Accuracy

O A e e PP P PP PP PP A ECECIITTITR tloat6d 2x10™-2x10™ 1x10™
COECTE PRI £loat32 1x10%-3x10® 6x10°
CLLLTTEETITTTTTT] floatls ex10%-6x10* 5x10

LT T I int32 1-2,147,483,647 05
LT intle 1-32767 05
Mantissa bits D:D:D]:D int8 1-127 0.5
[] binary 1 1
Eneeees e sesss Faaalil i n s hssesens eaanes esseses Savnaes :
Bit order
Operation Energy (pJ) Area (um?)
int8 addition 0.03 36
int16 addition 0.05 67
int32 addition 0.1 137
@TSMC 45nm
floatl6 addition 0.4 1,360
float32 addition 0.9 4184
int8 multiplication 0.2 282
int32 multiplication 3.1 4 -18x 3,4954 -27x
floatle multiplication 1.1 1,640
float32 multiplication 3.7 7,700

Dionysios Diamantopoulos / v2 / July 20,2018 / © 2018 IBM Corporation

Dr. Bill Dally’s NIPS 2015 tutorial “High-performance hardware for machine learning”

Data types and quantization error

(a) Fixed point

Quantized value

Raw value

(b) Fixed point

,//
(}vérﬂow

(c) Binary (d) Floating point

A

Ove}fféw

A

i

Raw value

Raw value Raw value

A hypothetical distribution of raw values (blue) and the corresponding discrete distributions resulting

from quantization ()

Dionysios Diamantopoulos / v2 / July 20,2018 / © 2018 IBM Corporation

https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/

Trends in HPC systems: Accelerators

Accelerated systems get finally adopted by industrial users
« 25% of new TOP500 systems in November’17 + June’18

» Accelerators can increase performance at lower TCO for targeted workloads

ACCELERATORS 200

130 /| HMatrix-2000
ﬁg / U PEZY-SC
100 i Kepler/Phi
90 Xeon Phi Main
E 80 M Intel Xeon Phi
..q.‘c' 70 M Clearspeed
v 60
a 50 i IBM Cell
40 kATl Radeon
30 M Nvidia Volta
20 M Nvidia Pascal
18 M Nvidia Kepler
Ya) ™~ 0 o) o — o~ m < LN Ya) ™~ 00 M Nvidia Fermi
o o o o i — — — — — — — —
o (] o o o o (] o o o (] o .
o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ Source: top500.0rg, 2018

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Silicon alternatives for accelerators

Control
Unit
(CU)

FLEXIBILITY

Arithmetic

u

u

u

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

-0
D -
o
o
o
&
o
0

00 oo oo oo

core core |

scalar unit scalar unit ‘

o i

R

MXU MXU
128x128 128x128 |

y

Industry trends
create new
opportunities

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

datacenterknowledge.com, Apr 25,2018 Commercializing FPGAs from edge-to-cloud scale

MPANIES
)MPANIES

Why: MicrosoftiHas Bet on
FPGAs o fiise Its Cloud With
Al

eetimes.com, March 19, 2018

News & Analysis

New Xilinx! CEO Touts "'Adaptive
Compufing'

Dylan McGrath

4 comments

intel.com, April 11, 2018

datacenterdynamics.com, May 18, 2017

eejournal.com, Sep. 7,
2017

generation TPU, available
as a service

1

FPGA
Accelerated Cloud Server
Delivers 10x acceleration for machine
learning, data analytics and video
processing

SHANGHAI, Sept. 6, 2017 /PRNewswire/

ANOTHER STEP TOWARD FPGAS IN SUPERCOMPUTING

April 4,2018 Nicole Hemsoth

There has been
into high performan
and
forward for scientific applica

While we do not necessarily

“The selected FPGAs, with 5,760 variable-precision DSP blocks
each, are well suited to floating-point heavy scientific

nextplatform.com, August 22, 2017

AN EARLY LOOK A BAIDU'SICUSTOM Al AND ANALYTICS PROCESSOR

August 22,2017 Nicole Hemsoth

W F" g | In the USS. it is easy to focus on our native hy;

(Google, Amazon, Facebook, etc.) and how thd

deploy infrastructure at scale.

But as our regular readers understand well, t

1
%Aicrosoftrfakes FPGA-Powered Deep
ea_rﬁiﬁﬁ*o the Next Level

FPGA-based Solution to Help Customers
Accelerate Business Applications

Memory Technology - Options for FPGAs

BRAM DRAM 3D Memory Flash
Capacity 10MB 16 GB 4GB 27TB
Bandwidth 300 GB/s 20 GB/s 128 GB/s 2 GB/s
Access Latency 5ns 40 ns 40 ns 50,000 ns
Power / MB 1000 mW 0.5 mW 0.2 mW 0.03 mW

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Source: The Era of Accelerators, V. Prasanna, FPL 2017

13

Xilinx FPGAs

Xilinx devices are carefully crafted to
deliver the compute, efficiency, costs,
and flexibility needs of a large array of
high-performance end systems.

Any-to-Any
Xilinx achieves this balance through a
mix of hardware programmable
resources (e.g., logic, routing, and 1/O)
and flexible, independent, integrated
core blocks (e.g., DSP slices and
UltraRAM), all built on leading edge
process technology, such as TSMC's
16nm FinFET process technology.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

S

Xilinx FPGA/SoC

Kernel

Xilinx All Programmable Devices: A Superior Platform for Compute-Intensive Systems, WP492 (v1.0.1) June 13, 2017

14

Xilinx FPGAs vs other acceleration platforms

General Purpose Compute

Device Tensor Operations Efficiency

Efficiency
NVidia Tesla P4 209 GOP/s/W(2) (INT8)
NVidia Tesla P40 188 GOP/s/W (INT8)
NVidia Tesla V100 ' 72 GFLOP/s/W(3) (FP16) | 288 GFLOP/s/W (FP16)
Intel Stratix 10 ' 136 GOP/s/W (INT8)
Xilinx Virtex® UltraScale+™ - 277 GOP/s/W (INT8) [Ref 27]

MNotes:

1. The numbers quoted are for comparison purposes only. Realizable device efficiency depends on the end
application and the user.

2. Giga operations per second per watt of power consumed.
3. Giga floating point operations per second per watt of power consumed.

Xilinx devices offer the most efficient general-purpose compute platform from a raw compute perspective for fixed
precision data types. This is primarily due to the lower overhead associated with processing in Xilinx FPGA-based
architecture.

Xilinx All Programmable Devices: A Superior Platform for Compute-Intensive Systems, WP492 (v1.0.1) June 13, 2017

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 15

State-of-the-art DL and NVidia Reduced Precision Support

In an effort to keep pace with ' DL Workload Data Type Progression
developments in the machine learning
inference space, GPU vendors have been FPe4 ﬂ Kepler K20 I
making thg necessary silicon Change§ to FP3o - S AlexNet 2012 M4/40
support a limited set of reduced precision § P4/40
data types, e.g., FP16 and INT8. For 2 FP16/_L INT16 Yy
example, the NVidia GPUs on Tesla P4 E;..', INT16
and P40 cards support INT8, providing o INT8 INTSY
four INT8 operations per ALU/Cuda core. &
E INT4 ?

: o O
However, machme—learmng mference Binary | | | | Binary % -
benchmarks published by NVidia for 5012 2013 2014 2015 2016 2017+
GoogLeNgt vl mferencg on Te;la P40 show Announced Year
only a 3X improvement in efficiency for
INT8 implementation vs. a FP32
implementation, illustrating the underlining [NVidia Efficiency Envelope] Y State of the Art Network
challenges with squeezing reduced
preCiSion Suppo I’t |nto the GPU arCh|teCtu re Xilinx All Programmable Devices: A Superior Platform for Compute-Intensive Systems, WP492 (v1.0.1) June 13, 2017

and achieving efficient results

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 16

Precision tuning: mandatory for

M
. . . *D?
® 1bit 2bit
dealing with power & memor
45 7 .
/ !

wall for modern NNs R, g

! orhe ecry ’ ’ Titan X(batch-32)
PR .

« With software hardware co-design, FPGA is . ’,’ e ey o
able to achieve 13x better energy efficiency ’?4' N M Y
than state-of-the-art GPU while using 30% PRl I @ Byionen PP & Zhana, 1SLPEDIS
power with conservative estimation. - PR : i o FoonT o T xasTedensh

. E , Guan, FCCM17 ~ag~ Zhang, ICCAD16 5
FP?A |ska prolm|5|tng candldat’e foyn@u ral e e azmﬂ R N L L &
network acceleration. - g '

- - Qiu, FPGA16
. . * - .— 2 R —— Zhang, F‘I:‘GAW-F Suda, FPGA16 Titan X(_LS.TI-ﬂ-sparse)

« Acceleration at bit-level dominates on power | ® Zhang, FPGATS
and performance. .

« Huge space for bit-width selection -> FPGAs

. ° Venieris, FPGA17
can offer DSE & early prototyping for arbitrary 1
. . ® Guan, ASPDAC1T
bit-widths.
oo] 0.5 1 15 2 25
Log10(Power/\W)
Dionysios Diamantopoulos / v2 / July 20, 2018 / ® 2018 IBM Corporation K. Guo, S. Zeng, J. Yu, Y. T. Wang, and H. Yang, “A survey of fpga based neural network 17

accelerator,” CoRR, vol. abs/1712.08934, 2017.

Challenges in using FPGA

== Programming FPGAs

Integrating FPGAs into applications &g

= Managing FPGAs in Cloud

Hardware Productivity — Time High Level Synthesis
to switch ! Based Design

RTL Based Design
Integration
Implement &

ation
First Design 15X Faster

Derivative Design >40X Faster

Typical QoR 0.7 -1.2X

Design Closure

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 19

The 2020 Digital Platform

« Programmable and configurable aspects
of the platform will be accessible via
convenient layers of programmability.
The current shift towards parallelism-
aware languages including C/OpenMP,
OpenCL, CUDA, AMP++, Matlab,
SystemC and OpenACC is clearly visible
and a vibrant reality among
programmers.

100

-
[]

90

80

70

% expected adoption

« Within less than 10 years ALL 60
computational platforms from the HPC
realm to the autonomous, omnipresent, %
embedded systems will require full
support by accessible ESL-HLS tools.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

will be supported by ESL-HLS

Platforms fully supported by tools

2, %

<>

2,

Source: ITRS

P, ¥,

Y

Y, 2,

(4

B B By By

20

Vivado HLS: Framework for
C-based IP Design

C/C++ to optimized RTLIP
C to hand-coded quality RTL-

 In weeks not months...

« Accelerated verification +Directives / Pragmas G, G+, Systemc - Untimed C-based code
« Constraints | OpenCLC
« Over 100X over RTL e vson =
. . . * Video [' J
« Ideal for algorithmic designs - Math — U
« Linear algebra
. . . + LogiCore IP f
« Excels at math (floating / fixed point) o e oS
- DSP (v2015.1)
* Video, DSP... C Synthesis
‘—‘ - Target optimized RTL
(. « Timed
- _ Interfaceable IP / Verified RTL J -
Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation « Connectivity ready

Vivado HLS: System IP Integration Flow

C-based IP Creation System Integration
C, C++, SystemC
s
Libraries — Vivado IP Integrator
Vivado™ HLS
Arbitrary Precision =
Video S
g:;:ralgebm ' = IP catalog 3 e ol .
LogiCore IP — : = : Vivado RTL
FFT, FIR l 1 =

VHDL or Verilog

System Generator for DSP

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Design Decisions

Decisions
made by 6
designer

O Functionality
= As implicit state machine

O Performance
= [atency, throughput

O Interfaces
O Storage architecture

= Memories, registers banks etc...

d Partitioning into modules
O Design Exploration

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

=

DeCiSiOHS Vivado™ HLS
made by
the tool '

L State Machine
= Structure, encoding

QPipelining

= Pipelinge, registers allocation
L Scheduling

= Memory I/O

= Interface I/O

23

Vivado HLS: Differentiations from RTL

Code is untimed (C/C++)

Loops are folded by default

Pragmas play a crucial role in HLS for throughput

Design control is added by HLS as a state machine
RAMs are auto-generated based on arrays
Simulation is tightly integrated

Extensive architecture exploration

Support for floating point

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

24

Arbitrary precision support in commercial HLS tools

Xilinx Vivado HLS

[ulint<W> (1-1024 bits) double, float, half

SystemC sC_[ulint<W> (64 bits) sc_[ulfixed<W,1,Q,0,N> double, float, half
sc_[u]bigint<W> (512 bits)

Intel HLS Compiler

C/C++ ac_int<N, true/false> (1-63 bits) ac_fixed<N, I, true, Q, O> double, float

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 25

High-Level-Synthesis
Scheduling & Binding Example

— In the scheduling phase of this example, HLS
schedules the following operations to occur
during each clock cycle:

* First clock cycle: Multiplication and the first
addition

» Second clock cycle: Second addition and
output generation

— In the initial binding phase of this example, HLS
implements the multiplie operation using a
combinational multiplier (Mul) and implements
both add operations using a combinational
adder/subtractor (AddSub).

— In the target binding phase, HLS implements
both the multiplier and one of the addition
operations using a DSP48 resource.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

int foo(char =, char a, char b, char c) {
char v;
v = X*a+b+c;
return v

}

Clock Cycle

-
Scheduling
Phase a »

Y

.

p
Initial Binding Mu
Phase

AddSub

.

AddSub

-
Target Binding
Phase

\

DSP48

AddSub

26

High-Level-Synthesis

Extracting Control Logic and Implementing I/O Ports

— HLS automatically extracts the control logic from the

C code and creates an FSM in the RTL design to
sequence these operations.

— HLS implements the top-level function arguments
as ports in the final RTL design. The scalar variable
of type char maps into a standard 8-bit data bus
port.

— Arrays are synthesized into block RAM by default,
but other options are possible, such as FIFOs,
distributed RAM, and individual registers.

— HLS reads the data from port a with other values to
perform the calculation and generates the firsty
output. The FSM ensures that the correct address
and control signals are generated to store this value
outside the block.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

void fool(int

y(+)
node 36(write)

Performance Resource

in[3], char a, char bk, char ¢, int out[3]) {

int x,vy;
for(int 1 = 0; 1 < 3; i++) {
X = in[i];
Yy = a*x + b + c;
cut[i] = v
}
) ciooe| [| L |
b
—
% + »
£
y out_data
| -
a
‘ *
in_data X
L — -
+ » out_addr
—=in_addr — out_ce
»in_ce ‘ = out_we
Finite State Machine (FSM)
= Performance - foo
Current Module : foo
|operation\Contral ...l _co | c1 | c2 | c3
1 c read(read)
2 b read(read)
3 a read(read)
4 tmpl (+)

27

Advantages of Hardware Efficient Data Types

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

char dinA t;
short dinB_t;
int dinC_t;

long long

dinD_t;

int doutl t;
unsigned int dout2_t;
int32_t dout3_t;
int64 t dout4d t;

+ Latency (clock cycles):

* Summary:

|Expression
|FIFO

| Instance

| Memory
|[Multiplexer
|Register

|Available

J
|Utilization (%)
fmm e

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

o - -
I, #include "types.h" \\
I)
1 void apint_arith(dinA_t inA, dinB_t inB, dinC_t inC, dinD t inD, |
1 doutl t *outl, dout2 t *out2, dout3 t *out3, doutd t *outd I
1
!) {
1 1
1
: // Basic arithmetic operations 1
1 *outl = inA * inB; 1
1 *out2 = inB + inA; 1
1 *out3 = inC / inA; 1
| *outd = inD % inA; I
1
1
\) Y
\N_ __ —’/

* Summary:

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

int6 dinA_t;
intl2 dinB_t;
int22 dinC_t;
int33 dinD t;
intl1l8 doutl_t;
uintl3 dout2_ t;
int22 dout3_t;
int6 dout4d_t;

e —— : C-based native data types 1 Arbitrary [e S
Interval Pipeline _hi . . | .. atency nterva ipeline
| mwin | max | mpe | O-Ditboundaries (8,16,32,64bits) precision data | min | max | min | max | zype |
o PR PN, + o = = +———— F-——————— +
| 67| 67| none | 1 typeS (11024 bltS) ‘ 35| 35| 36] 36] none |
[P — [P [T + | fo———— Fm———— - F———— o ————— +
[* Summary
——t - o - ———— e + +- Fm——————— +————— +e——————— - +
| BRAM_18K| DSP48E]| FF | LUT | I | Name | BRAM 18K| DSP48E]| FF | LUT |
——t————————— Fm—————— Fm——————— Fm——————— + | Fommm e F-——————— +o—————— +o—m————— e +
| - - 0] 17| | |Expression | - -] o] 13]
| -| | | | I | F1FO | | | | |
| - 1| 17920 17152 I |Instance | - 1] 4764 4560 |
| -1 -l -1 -1 [Memory | -1 -1 -1 -1
| -| -1 | - I |Multiplexer | | | - -
| -1 -1 7] -1 | |Register | -1 -1 6] -1
——t = Fo————— Fm—————— Fo—————— + +-———— e e +o—————— Fo—————— +
| 0| 1| 17927 17169 : | Total | of 1] 4770 | 4573 |
——t————————— m————— Fm—————— ————— + e e o fm——————- tm——————— o ————— +
| 650 | 600| 202800| 101400] | |Available | 650 | 600| 202800| 101400]
——to————— - o o o= + | +——:—I————T ———————— Fmm e Fo—————— Fom————— +
| 0] ~0 | 8| 16| |utilization (%) | o ~0 | 2| 4|
——tm———————— tm—————— Fo——————— Fo——————— + 1 e fmmm mmm e o m +
I
[

28

Interface synthesis

#include "sum _io.h"

dout_t sum_iol(din_t inl, din_t in2, dio_t *sum) {

dout_t temp;

*gsum = inl + in2 + *sum;

temp = inl + in2;

return temp;

This example above includes:
«Two pass-by-value inputs in1 and in2.

A pointer sum that is both read from and
written to.

A function return, the value of temp.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

ap_ctrl [Dypmmm] || =ap_ctr
= Ppap_start
— <ap_done
— dap_idl
i ap_return[31:0] ap_return[31:0]
it sum_o[31:0] sum_o[31:0]
ap_clk Q——ap_clk i - :
vid[0:0 :
ap_rst [y 201t sum_o_ap_vid[0:0] sum_o_ap_vid[0:0]
in1[31:0] > in1[31:0]
in2[31:0] > in2[31:0]
sum_i[31:0] > sum_i[31:0)
>

«Clock and Reset ports: ap_clk and ap_rst.

- Block-Level interface protocol. These are shown expanded
in the preceding figure : ap_start, ap_done, ap_ready, and
ap_idle.

- Port Level interface protocols. These are created for each
argument in the top-level function and the function return (if
the function returns a value). In this example, these ports are:
inl, in2, sum_i, sum_o, sum_o_ap_vld, and ap_return.

29

Data Type and Interface
Synthesis Support

The type of interfaces that are created by
interface synthesis depend on the type of C
argument, the default interface mode, and the
INTERFACE optimization directive, using the
following abbreviations:

« D: Default interface mode for each type.
e I: Input arguments, only read.
« O: Output arguments, only written.

 I/O: Input/Output arguments, both read and
written.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Argument
Type

Scalar Array

Pointer or Reference

HLS::
Stream

Interface Mode

Input Return I 1o

I[e]

0

land O

ap_ctrl_nane

ap_ctrl_hs

ap ctrl_chain

axis

s axilite

m_axi

ap_none

ap_stable

ap_ack

ap_vid

ap_ovld

ap_hs

ap_memory

bram

ap_fifo

ap_bus

D Supported D = Default Interface |:| Not Supported

X14293

30

Interface Synthesis and Structs

typedef struct{

intl2 A;
int18 B[4]: Struct Port Implementation

inté C;
} my data;

void foo(my_data *a)

The DATA_PACK optimization
directive is used for packing
all the elements of a struct
into a single wide vector. This
allows all members of the
struct to be read and written
to simultaneously.

DATA_PACK optimization

The first element of the struct
is aligned on the LSB of the

DATA_PACK optimization with byte_pad on the struct_level

DATA_PACK optimization with byte pad on the field level

o o f - e B

-t -w-—p -

B-bit 2-bit 1-bit 18-bit 12—brl
89... Single packed vector [89:0]
W e | s | s | w0 | o

6-bit 18-bit 18—b'rt 18—bit 13 bit 12-brt

Single packed vector / port [95:0] 9|

6-bit 6-bit 18-bit 18—b'rl 18—bit 18 bit 12hrt

0 C

[11s..

vector and the final element
of the struct is aligned with

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Single packed veclor / port [119:0]

el - N - Il - Il m"-
-‘—H—H—H—b

N ———.
the MSB of the vector. Got Got Goit 18-

6-bit 18-bit 6-bit 18-bit 4-hit 12-bit

31

AXI4-Stream Interfaces

An AXI4-Stream interface can be applied to any input
argument and any array or pointer output argument.

AXI4-Stream interfaces are always implemented as
registered interfaces to ensure no combinational feedback
paths are created when multiple HLS IP blocks with AXI-
Stream interfaces are integrated into a larger design.

Four types of register modes are provided to control how
the AXI-Stream interface registers are implemented.

e Forward: Only the TDATA and TVALID signals are
registered.

« Reverse: Only the TREADY signal is registered.

- Both: All signals (TDATA, TREADY and TVALID) are
registered. This is the default.

 Off: None of the port signals are registered.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

AXl4-Stream Interfaces Without Side-Channels

ap_ ctrID—”

<hap_ctrl

AD__.m.A
= PA_TVALID
— 4A_TREADY

=~ pA_TDATA[31:0]

ap_clk 5——=ap_clk
ap_rst_n >——7 : ap_rst_n

]

|

B]) B

B_TVALIDm
B_TREADY 4
B_TDATA[31:0]»

—

AXIl4-Stream Interfaces With Side-Channels

ap_ ctrID—"
AD—=

ap_

ap_rst_n >—-

<rap_ctr

=A
»A_TVALID
“A_TREADY
»A_TDATA[31:0]
»A_TDEST[5:0]
pA_TKEEP[3:0]

pA_TSTRB[3:0]

»A_TUSER[1:0]
»A_TLAST[0:0]
pA_TID[4:0]

ap_clk

ap_rst_n

/]

Be==
B_TVALIDp
B_TREADY <
B_TDATA[31:0]p
B_TDEST[5:0]»
B_TKEEP[3:0]»
B_TSTRB[3:0]»
B_TUSER[1:0]»
B_TLAST[0:0]»
B_TID[4:0]p

32

w

AXIA-Lite Interface

You can use an AXI4-Lite interface to allow

the design to be controlled by a CPU or microcontroller.
Using the Vivado HLS AXI4-Lite interface, you can:

« Group multiple ports into the same AXI4-Lite interface.

 Output C driver files for use with the code running on an
embedded processor.

The standard API implementation provide functions to
perform the following operations.

« Initialize the device
« Control the device and query its status
e Read/write to the registers

« Set up, monitor, and control the interrupt

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

AXl4-Lite Slave Interfaces with Grouped RTL Ports

)| b o

\==s_axi_BUS_A

ps_axi_BUS_A_AWADDR([5:0]
ps_axi_BUS_A_AWVALID
4s_axi_BUS_A_AWREADY
ps_axi_BUS_A_WDATA[31:0]
ps_axi_BUS_A_WSTRB[3:0]
ps_axi_BUS_A_WVALID
<s_axi_BUS_A_WREADY
4s_axi_BUS_A_BRESP[1:0]
<s_axi_BUS_A_BVALID
Ps_axi_BUS_A_BREADY
Ps_axi_BUS_A_ARADDR[5:0]
Ps_axi_BUS_A_ARVALID
«s_axi_BUS_A_ARREADY
«s_axi_BUS_A_RDATA[31:0]
«4s_axi_BUS_A_RRESP[1:0]
«s_axi_BUS_A_RVALID
ps_axi_BUS_A_RREADY

|? ' "] interrupts

33

AXI4 Full Interface

You can use an AXI4 master interface on array or
pointer/reference arguments, which Vivado HLS
implements in one of the following modes:

« Individual data transfers
« Burst mode data transfers

With burst mode transfers, Vivado HLS reads or writes
data using a single base address followed by multiple
sequential data samples, which makes this mode
capable of higher data throughput. Burst mode of
operation is possible when you use the C memcpy
function or a pipelined for loop.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

volid example(volatile int *a) {

#pragma HLS INTERFACE m_axi depth=50 port=a
#pragma HLS INTERFACE = _axilite port=return

//Port a is assigned to an AXI4 master interface

int i;
int buff[50];

//memcpy creates a burst access to memory
memcpy (buff, (const int*)a,50*%sizeof(int)) ;

for(i=0; i < 50; i++){
buff[i] = buff[i] + 100;
1

memcpy ((int *)a,buff,50*sizecf (int)) ;

}

| dhs_axi_AXILiteS [7....-,

ap_ck m_axi_gmem32 < [
y ' interrupt
=—ap_rst_n

34

Design Optimization - Clock

Using the clock frequency and device target
information Vivado HLS estimates the timing of
operations in the design but it cannot know the final
component placement and net routing:

o these operations are performed by logic synthesis of the
output RTL. As such, Vivado HLS cannot know the exact
delays.

o By default, the clock uncertainty is 12.5% of the cycle
time. The value can be explicitly specified beside the
clock period.

o Vivado HLS aims to satisfy all constraints: timing,
throughput, latency.

o If aconstraints cannot be satisfied, Vivado HLS always
outputs an RTL design

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

A

Clock Period

\j

A

Effective Clock Period
used by Vivado HLS

-t

Clock Uncertainty

~

Margin for Logic
Synthesis and P&R

35

Design Optimization - Throughput

Pipelining allows operations to happen concurrently:
each execution step does not have to complete all
operations before it begin the next operation.
Pipelining is applied to functions and loops.

There is a difference in how pipelined functions and loops
behave.

o Inthe case of functions, the pipeline runs forever and
never ends.

o Inthe case of loops, the pipeline executes until all
iterations of the loop are completed

o Anpipelined function will continuously read new inputs
and write new outputs. By contrast, because a loop must
first finish all operations in the loop before starting the
next loop, a pipelined loop causes a “bubble” in the data
stream: a point when no new inputs are read as the loop
completes the execution of the final iterations, and a
point when no new outputs are written as the loop starts
new loop iterations.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

void func(..)

op_Read; RD
op_Compute; m
}
B T — -+
3 cycles 1 cycle
LRGP | wR CURGHP] WR L eMP | WR |
- RGP WR |
2 cycles -
2 cycles

(A) Without Function Pipelining

(B) With Function Pipelining

void func(m,n,o) {
for (i=2;i>=0;i--) {
op_Read;
op_Compute; [|
opwrite; [
}
}
-
3 cycles 1 cycle
- o [ETN T
8 cycles m EEE
4 cycles

(A) Without Loop Pipelining

(B) With Loop Pipelining 36

Design Optimization — Array
Partitioning

Arrays are implemented as block RAM which
only has a maximum of two data ports. This can
limit the throughput of a read/write (or
load/store) intensive algorithm. The bandwidth
can be improved by splitting the array (a single
block RAM resource) into multiple smaller arrays
(multiple block RAMs), effectively increasing the
number of ports. Arrays are partitioned using the
ARRAY_PARTITION directive. Vivado HLS
provides three types of array partitioning, as
shown in the following figure:

« block: The original array is split into equally sized blocks of
consecutive elements of the original array.

« cyclic: The original array is split into equally sized blocks
interleaving the elements of the original array.

- complete: The default operation is to split the array into its
individual elements. This corresponds to resolving a memory

into registers.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Lo

| 2

| ... IN3]N2]N1]H

my_array[10][6][4] — partition dimension 1

my_array_0[10][6]
my_array[10][6][4] — partition dimension 3 —p MY_array_1[10][6]
my_array_2[10][6]
my_array_3[10][6]

my_array_0[6][4]

—» my_array_1[6][4]

my_array_2[6][4]
my_array_3[6][4]
my_array_4[6][4]
my_array_5[6][4]
my_array_6[6][4]
my_array_7[6][4]
my_array_8[6][4]
my_array_9[6][4]

o | 1] | (n2-1) |
N2 | | N2 | N
o | 2 | | nN-2
1] | N3 | N
[
-
I

my_array[10][6][4] — partition dimension 0 —p= 10x6x4 = 240 registers

Throughput Optimization —
Optimal Loop Unrolling to
Improve Pipelining

« By default loops are kept rolled in Vivado
HLS: all operations in the loop are
implemented using the same hardware
resources or iteration of the loop.

« VHLS provides the ability to unroll/ partially
for-loops using the UNROLL directive.

* Rolled Loop: each iteration is performed in a separate
clock cycle. This implementation takes four clock
cycles, only requires one multiplier and each block
RAM can be a single-port block RAM.

- Partially Unrolled Loop: two multipliers and dual-
port RAMs to support two reads or writes to each RAM
in the same clock cycle. Only takes 2 clock cycles to
complete: half the initiation interval and half the
latency of the rolled loop version.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

vold top(...) {

for mult:for (i=3;i>0;i--) {
ali] = b[i] * cli]:

1

Rolled Loop Partially Unrolled Loop
Read b[3] Read b[2] Read b[1] Read b[0] Read b[3] Read b[1]
Read c[3] Read ¢[2] Read c[1] Read c[0] Read c¢[3] Read c[1]
Read b[2] Read b[0]
L -] - | e ———
- 1 -]
-] - |
-
Time (clk cycles)

« Unrolled loop: all loop operation can be performed in a
single clock cycle. This implementation however requires
four multipliers. More importantly, this implementation
requires the ability to perform 4 reads and 4 write
operations in the same clock cycle. Because a block RAM
only has a maximum of two ports, this implementation
requires the arrays be partitioned.

Unrolled Loop

Read b[3]
Read ¢[3]
Read b[2]
Read ¢[2]
Read b[1]
Read c[1]
Read b[0]
Read c[0]

]
]
—
——

38

Throughput Optimization —
Task Level Parallelism

DATAFLOW optimization creates a parallel

process architecture and it is a powerful

method for improving design throughput and
latency.

The channels between tasks can be simple

FIFOs for scalar variables, or ping-pong

buffers for non-scalar variables like arrays.
Each of these channels also contain signals
to indicate when the FIFO or the ping-pong
buffer is full or empty.

data

-

»0000-

il

»0000 =P

JUIH

ap_start

0000 |
"N

FIFOs or Ping-Pong Buffers

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

data

ap_vid

ap_done

in out »in out w-{in out -

n function_1 tmp - tmp function_N out
TOP
Sequential Functional Description
Interface Process 1 Channel Cen Channel Process N Interface
TOP
Parallel Process Architecture
top b,e,d)
L); func_A
2); T
(I A O 0 I
- - -—
8 cycles 3 cycles
(VNN WeB | fncC | func_ A func A
| funcB QN fucB |
- 8 cycles g - 5 cycles =

(A) Without Dataflow Pipelining

(B) With Dataflow Pipelining

39

Latency Optimization —
Merging Sequential Loops

All rolled loops imply and create at least one ~ *°*¢ "® (@lElBIE el aler 0 B g ? P teging
state in the design FSM. When there are e
multiple sequential loops it can create ST T e 1 cycle
additional unnecessary clock cycles and e 4 oycles 1cycle
prevent further optimizations. I
Sub: for (i=3;i>=0;i--) | —— - Y
The LOOP_MERGE optimization directive is el 1 ovdle G’Dﬁ‘ el
used to automatically merge loops v . -
cycles
Merging loops gllqws the logic within the ’ ~ 1 cycle
loops to be optimized together. In the 1 oycle !

example, using a dual-port block RAM allows
the add and subtraction operations to be
performed in parallel.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 40

void foo (...) {

Area Optimization — Merging e
. . #pragma HLS ARRAY MAP va.r:?.able=array1 :?.nstancefa.rra.:ﬁ hor:i.zon:al
Arrays: Horlzontal Mappl ng #p:rla.gma HLS ARRAY MAP variable=array2 instance=array3 horizontal
1:_>oi_r;:ayflo[rit:1::(3':1&1\?:1++}' {
array2([i] =

« When there are many small arrays in the C)

Code, mapping them into a single larger array -

typlc.allé/ reduces the number of block RAM ey M 5T]

recdlinee. amay2N] | o I 1) .. || N2 || N-1]
- Eacharray is mapped into a block RAM or @ (oo o o

UltraRAM, when supported by the device. The with more elements

basic block RAM unit provide in an FPGA is 18K. amayaimeN) [0 7 - M2z [Ma] 0 J 1 - [Nz J N1]

If many small arrays do not use the full 18K, a
better use of the block RAM resources is map

RAM1P

N-1 A M+N-1
many of the small arrays into a larger array. N2
- Horizontal mapping: this corresponds to
. . 1

crgqtmg anew array by concgtenatlng the > o
original arrays. Physically, this gets M1

implemented as a single array with more M

elements. 1

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 0 0 41

MSB LSB

Area Optimization — Merging
Arrays: Vertical Mapping

When there are many small arrays in the C
Code, mapping them into a single larger array
typically reduces the number of block RAM
required.

Each array is mapped into a block RAM or
UltraRAM, when supported by the device. The
basic block RAM unit provide in an FPGA is 18K.
If many small arrays do not use the full 18K, a
better use of the block RAM resources is map
many of the small arrays into a larger array.

Vertical mapping: this corresponds to creating
a new array by concatenating the original words
in the array. Physically, this gets implemented
by a single array with a larger bit-width.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

void foo (...) {

int8 arrayl[M];

intl1l2 array2[N];
#pragma HLS ARRAY MAP variable=array2 instance=array3 vertical
#pragma HLS ARRAY MAP variable=arrayl instance=array3 vertical

loop_1: for(i=0;i<M;i++) {

arrayl[i] = ...;
array2[i] = ...;
}
amayiM] | 0 [1 | [[M2)] m1 |
amay2NI [0o || 1]| | | [[N2 || N
Vertical expansion
with more bits
MSB
array3[N] 0 | 1 | | M-2 | M-1 |
o | 1 | | [mn2 || N1 ||LsB
RAM1P
N-1 A N-1
M-1 N-2
M-2
Addresses
1 1
0 0 0
MSB LSB

42

Area Optimization — Merging
o void foo (...) {
ArravS: Reshaplng int arrayl[N];

int array2|[N];
int array3[N];
#pragma HLS ARRAY RESHAPE variable=arrayl block factor=2 dim=1

. . . #pragma HLS ARRAY RESHAPE variable=array2 cycle factor=2 dim=1
The ARRAY_RESHAPE d|reCt|Ve Comb|nes #pragma HLS ARRAY RESHAPE variable=array3 complete dim=1

ARRAY_PARTITIONING with the vertical mode
of ARRAY_MAP and is used to reduce the
number of block RAM while still allowing the

beneficial attributes of partitioning: parallel array1[N] g I
access to the data. e S e e e
The ARRAY_RESHAPE directive allows more array2[N] - L
data to be accessed in a single clock cycle. In CTiTe [Twlwelwr] [ode > Lss[0| 2 N2
cases where more data can be accessed in a array6[1]
. . array3[N] MsB [N1
single clock cycle, Vivado HLS may S T m e N
automatically unroll any loops consuming this 5
LSB 0

data, if doing so will improve the throughput.

The loop can be fully or partially unrolled to Ideal]cOI' transprecision Support 1]

create enough hardware to consume the
additional data in a single clock cycle.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 43

Flexpoint format

(a) float1e6 tensor (b) flex16+5 tensor
Integer tensor

(on device) (on device) Shared Maximum absolute
QT exponent value deque (on host)
ANNNRRNRRNRRNRRINE Sl NNNNNNNNNE (on host) g
e | [, | O T T L
D o !]"

e [
, [[TTT T IR ; [T e
15 7 0 15 7 0 0 15 7 0
Bit order Bit order

Flexpoint is a tensorial numerical format based on an -bit integer tensor storing mantissas in two’s
complement form, and an -bit exponent, shared across all elements of the tensor. This format is denoted as

flexN+M

Flexpoint tensor is essentially a fixed point, not floating point, tensor. Even though there is a shared
exponent, its storage and communication can be amortized over the entire tensor, a negligible overhead for
huge tensors. Most of the memory on device is used to store tensor elements with higher precision that
scales with the dimensionality of tensors Ats:/ai inel.comflexpoint-numerical-innovation-underlying-intelnervana-neural-network-processor/

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 44

1 Initialization mode
;

Flexpoint format s

« Intel devised an exponent management '
algorithm called Autoflex, designed for Perform

an operation

iterative algorithms such as stochastic
gradient descent where tensor operations,

e.g. matrix multiplication and convolution, | | Decrement | _underfion _~Check maximum ™ Overfow | Increment
' exponent absolute value exponent

are performed repeatedly and outputs are

stored

- Ininitialization mode, exponent of a tensor | Operonmoce pe
is iteratively adjusted, starting from an next operation
initial guess, until it is proper. During
training, each operation on a tensor is Collect maximum
wrapped around by an adaptive exponent | s s
management, which predicts the trend of :
the tensor’'s maximum absolute mantissa | [pecresse
value based on statistics gathered from |
previous iterations in hardware buffers.

Under threshold Over threshold

Increase
exponent

Predict maximum
absolute value

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation ‘“",.,"""""""T """" TTeTTErmTT T TTTTTTTTTTTTTTTT o m e 4
https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/

Flexpoint versus floating point.

« Inallthree experiments, flex16+5 achieved
close numerical parity with float32,
whereas significant performance gaps were
observed in float16 for certain cases.

« For the two convolutional networks for
Image classification, misclassification errors
were significantly higher in float16 than in
float32 and flex16+5.

« Inthe case of Wasserstein GAN, floatlé
significantly deviated from float32 and
flex16+5, starting from an undertrained
discriminator; quality of generated images
was also accordingly

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Top-5 misclassification error

Wasserstein-1 estimate

t

0.6

04 |

02

0.5 H

0

- (c) Wasserstein GAN (LSUN bedroom)

(a) AlexNet (ImageNet 1000-class)

1
0 100 200
Epoch number

1
0 100, 000 200, 000
Generator iteration number

(e) float32

L
y:
b gy

IEME T

(b) ResNet-110 (CIFAR10)

o o
N w

Top-1 misclassification error
=]

D e —

o (d) Wasserstein GAN (LSUN bedroom)

1 1 L
50 100 150
Epoch number

Fréchet inception distance

(f) floatlé

L4

’Jg kJLA

BBl =D
L

https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/

Number of epochs trained

(g) flex16+5

46

Challenges in using FPGA

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

47

What if ...

... you could easily program your FPGA using C/C++
... and get x10 performance* in a few days ?

PCLEFPGA ___|CAPIFPGA ____|CAPISNAP
Target Customer Computer Engineers Computer Engineers Programmers
Development time 3-6 Months 3-6 Months Days
Software Integration PCI-E Device Driver LibCXL Simple API
Source Code VHDL, Verilog, OpenCL VHDL, Verilog, OpenCl} C/C++, Go
Coherency, Security None POWER + PSL POWER + PSL

CAPI SNAP Overview, CAPI education, 2017

A framework for application developers to quickly and easily
create accelerated applications on POWER.

*compared to running the same C/C++ in software

The CAPI — SNAP concept
FPGA becomes a peer of the CPU

=>» Action directly accesses host memory

. + Manage server threads and actions
\ Manage access to |I0s (memory, network)
=>» Action easily accesses resources
| +
Action X Gives on-demand compute capabilities
DODDDDDDP| SNAP | Action Y L FPGA | Gives direct I0s access (storage, network)
Action Z =>» Action directly accesses external resources

-+

.
I / ivado Vvads) Compile Action written in C/C++ code
l /l | FPGA | HLS Optimize code to get performance

=» Action code can be ported efficiently

j:_gﬁm =~ Best way to offload/accelerate a C/ C++ code with :
& Network - Minimum change in code

{ﬁv Pg/f - Quick porting

- Better performance than CPU

CAPI SNAP Overview, CAPI education, 2017

49

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Why SNAP?

FPGA acceleration can provide huge deployment performance benefits compared to software.

However, traditional development of an FPGA accelerator takes specialized skills (RTL) and is
quite time consuming (many month of development).

CAPI-SNAP makes it easy !

CAPI-SNAP provides the infrastructure that :
1. Allows programmers to directly port algorithms to the FPGA (e.g. C/C++->FPGA) } pevelopment
2. Has asimple API for the host code to call the accelerated action -

3. Manage jobs during runtime (including virtualization)
— Deployment

4. Manages data access and put-away to/from the accelerated action during runtime |

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 50

FPGA stack : then and now

Old FPGA Method CAPI SNAP Method
rFIash, DRAM, EN data moversj é N\
Algorithm Algorithm

.

CAPI + SNAP Library and | ©AP! manages security
and virtual addressing.

Data Movers SNAP moves data and
manages job queues

Application Application ‘?\

Application calls FPGA via PCIE Application makes function call
Device Driver calls and data copy. to Algorithm.

Host Data Mover

CAPI SNAP Overview, CAPI education, 2017

Group Name / DOC ID / Month XX, 2018 / © 2018 IBM Corporation 51

CAPI-SNAP: the framework

Application

Process A
Slave Context

SNAP | job
library

ie]

Ueus

libex|

cxl

4

1)

Application writer decides what to
offload/accelerate

1) Pointer to Source of data

2) Pointer to where results should go(__pest
2) Action is performed on FPGA

3) Application is informed of action completion or

gets result data directly in memory

Action X

DRDDDDDDD| SNAP

Action Y

!

Action Z

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Host Memory
On-FPGA DIMM
On-FPGA Flash
SAN

Ethernet

Flash Storage

CAPI SNAP Overview, CAPI education, 2017

52

CAPI-SNAP: the framework

Application

Key:
Base CAPI Components

CAPI SNAP Components

User host code and accelerator IP

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

queue_workitem
g - Action
g priv_data
PSL/AXI bridge (simplified)
Action registers
src_text! @ Host DMA
src_pattern @
3 ddr_text1 @ Cantral
H [snap_addr]src_textl.addr (LSB)
[snap_addr]src_textl.addr (MSB)
[snap_addr]src_textl.size
— | [snap_addr]src_textl.flags (SRC, DST, ...) I [snap_addr]src_textl.type (DRAM, NVME,..)
= i« ++”
= == CIC

MMIO £ XILINX

. \/\VADO?

CAPI SNAP Overview, CAPI education, 2017

i 7 on-card

DRAM

Caxf wve

Network
(TBD)

CAPI SNAP Enabled Card

53

CAPI-SNAP paradigms

Off-load Method Example: Basic offload Egress Method
Processor Processor
Chip Chip
Examples: Machine Learning, Genomic algorithms, . . .
Erasuir)e Code offload, DeengOmputationg Examples: Encryption, Compression, Erasure Code prior to
network or storage

Ingress Method ‘Funnel” Engine

Processor

Processor

Chip

Chip

Examples: Database searches, joins, intersections, merges

Examples: Video Analytics, Deep Packet
Inspection (DPI), Video Encoding (H.265) etc CAPI SNAP Overview, CAPI education, 2017

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

54

Offload method: SHA3 kernel: FPGA is >35x faster than CPU

CPU (antipode)
slices/32 16 cores - 160 threads
FPGA KU060-32// System P
NB_ROUNDS NB_TEST_RUNS nb_elmts freq test_speed calls (msec) (msec)

100,000 65,536 32 65,536 3,200,000 22 1,260
100,000 65,536 128 65,536 12,800,000 85 3,460
100,000 65,536 4,096 65,536 409,600,000 2,715 95,975
100,000 65,536 8,192 65,536 819,200,000 5,429 190,347
100,000 65,536 32,767 65,536 3,276,700,000 21,709 754,198
100,000 65,536 65,536 65,536 6,553,600,000 43,418 1,505,790

time (ms)

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

SHA3 TEST_SPEED - EXECUTION TIME (MSEC)

¥ —8— FPGA KU

number of test_speed calls

CAPI SNAP Overview, CAPI education, 2017

FPGA Speedup

57
41
35
35
35
35

55

Funnel engine: Array intersection benchmark

16 test_speed functions in parallel: 32 test_speed functions in parallel:

|;nI}Ha|M

| g
: - |
c 1
b el 1|
i | W

CAPI SNAP Overview, CAPI education, 2017

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

56

Funnel engine: Array intersection benchmark

Given two unsorted arrays, write a function that returns the third array which is the intersection of the two arrays. This means that
the resulting array should only contain elements that appear in both input arrays. Order of elements in the resulting array is
irrelevant.

SW CPU procedure: FPGA procedure:
» Copy Source arrays from * HW intersection

DDR to Host * Copy Result array from
* SW intersection DDR to Host

KBytes Host total Host executior Host Access FPGA Total FPGA executi FPGA Result store FPGA speedu

16 30686 30,621 65 265 228
32 33668 33,562 106 467 422
64 34165 33,978 187 925 819
128 28706 28,354 352 1760 1,627
256 32467 31,775 692 3500 3,245

37
45
106
133
255

134
80
42
17
10

CAPI SNAP Overview, CAPI education, 2017

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

57

Key questions to identify candidate algorithms

* What is the first operation you do on data as you pull it
into the server? “Funnel” Engine

* Are you culling the data? Processor

- ? ? Join? ions? Chip
Search? Merge? Join? Intersections”

* Do you have long running algorithms?

* What code does your profiling identify as taking a high
percentage of your CPU time?

Off-load Method Example: Basic offload

Processor
* Do you have a lot of recursion or looping? Chip

* Numerical intensive operations?

* Are you doing data clean-up or formatting before storing Egress Method
to 10?

CAPI SNAP Overview, CAPI education, 2017 Processor

Chip

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

111

58

SNAP enabled card details: Alpha-Data ADM-PCIE-KU3

3.5MB Block Ram
on FPGA

8GB DDR3

Two 40Gb QSFP+ Ports ;‘W(TEES SR A L | otcncy to FPGA:
Future Use: Currently no Bridge to - s R T = - 230ns
SNAP

FPGA to Host Memory Access

Latency to/from FPGA: 0.8us
Bandwidth to FPGA: ~3.8GB/s reads and writes

CAPI SNAP Overview, CAPI education, 2017

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 59

SNAP enabled card details: Nallatech 250S

Two 1TB NVMe sticks (1.92TB effective)

Latency to FPGA: ~0.8ms
Bandwidth to FPGA: Read 1.8GB/s

Ak e
o, A e
LA)

3.5MB Block Ram | R s
on FPGA ‘) =0 e

i 4GB DDR4 (on back of card)
““ Latency to FPGA: 184ns Read / 105ns
write

CAPI SNAP Overview, CAPI education, 2017

Latency to/from FPGA: 0.8us
Bandwidth to FPGA: ~3.8GB/s reads and writes (CAPI limit)

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 60

Job-Queue mode

Example:
When to use this mode? Fetch 8KB from Flash;
+ FPGA-action executes a job and returns after completion Eealchic .
_ . _ Store location of first hit at
» Action can be called by multiple processes simultaneously. host addr 1000
Process B ‘
q
b Process A Req uest
What do you get? Slave Context

« Support for multiple processes N scheduled on a single W Action X
action. MDD SNAP | Action Y
— Future: multiple FPGA-actions M virtually in parallel c Action Z

controlled by built in job-managerGeneric job-execution
model with request and completion queue per AFU context

» Prefetching of memory areas, if possible] exl Completion
Possible use-cases l'
+ FPGA acceleration within a Cloud, e.g. using Docker
virtualization

CAPI SNAP Enabled Card

CAPI SNAP Overview, CAPI education, 2017

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 61

Direct-access mode

* \WWhen to use this mode?

— Data-streaming approach with data-in and data-out queue

FPGA-action is designed to permanently run

Event driven operation

* What do you get?

* Possible use-cases

Support for N processes using N FPGA-actions in parallel
FPGA-action attachment to one process exclusively

Selected FPGA-action MMIOs are mapped into the
process address space

Dedicated interrupt(s) per action

Process A and Process B occur sequentially (no
concurrence)

Use-cases where FPGA-action must permanently run
Networking

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Process B ‘

rn

Process A
Slave Context

Example:

Open TCP/IP Channel
Scan incoming packets
Alert host on rogue packets

Start

Action Y
Action Z

CAPI SNAP Enabled Card

CAPI SNAP Overview, CAPI education, 2017

62

Define your API parameters

Key questions:

Does your action require parameters?
Where does your data reside (source data)?
For Job Queue mode: What happens when your action completes?

* How does your application know that an action completed?
* Are there results (destination data)?
For Direct Access Mode:
* How does the accelerator start? Do you need to open a channel?

* What happens when the action observes an event?

Does your application need to monitor the “action”? (e.g. MMIO register)

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 63

Define your API parameters

APl will be a structure passed to the SNAP Library.

Some examples:

Hash-Join

queue_workitem
act/flags seq retc
priv_data

sepqgl

Action registers

t1

t2

t3

hashtable
t1_processed
t2_processed
t3_produced
checkpoint

sa1iq goL

goorer$

U

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Sponge SHA3

queue_workitem

g act/flags seq retc
? priv_data
Action registers
checksum_type — il
N checksum_in —
§ checksum_out —
E‘ nb_elmts freq [—— -3

nb_test_run nb_rounds

——— |

Intersection

sa1hqg|

queue_workitem
act/flags seq retc
priv_data

sa)hq g0

Action registers

src_tables_host
src_tables_ddr
result_table
step

1

CAPI SNAP Overview, CAPI education, 2017

64

Common Scenarios for accelerators (NN example)

N weight kernels

NXNxN : = O
Input Qutput pre-
Activation activation

O(N3) data
O(N#K?) compute

Convolutional Neural Network (CNN)

High Compute-to-Data Ratio

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Output pre-activation
Input activation

NxN

Weight
Matrix

O(N?) data
O(N?) compute

MLPs, LSTMs, GRUs

Low compute-to-data ratio

The Brainwave project, 2017

65

Common Scenarios for accelerators (NN example)

Model
Parameters
Initialized in

DRAM

.O Model Parameters
Stored in on-chip
BRAMs

The Brainwave project, 2017

DRAM read energy much higher
than FPGA processing

Use transprecision storage and processing to
accommodate persistent accelerators on the FPGA

resources
Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 66

Bidirectional Long-Short Term Memory based OCR

Processing direction from left to right Processing direction from right to left D :[n p u ‘t : :[m age Of O n e Text - LI n e
f’|§ﬂr Andre bier gethan, fei flumme Gabe, -{ |'Mr Wnbdre hier gethan, fei frumme Gabe, .1- >
0! c-1 0 C-1

X NEGTXG+3) \xrswxcw Xt D Algorlthm
e | = FW and BW pass to updated LSTM cells
v v = Merge and produce final prediction

O Output: Detected text sequence

Implemented as

|
1
a Half-stums buffer | . .
B input hidden output — feed-forward path
1
\

O(N2) Data - O(N?) Compute

Connectionist Temporal Classification (CTC) Layer

!
!
E‘ ------------- layer 2 -layer - layer ----» feedback connection
i lphaber Wiz + R,y'_l +br) | NE——— :
! ” t t—1 P \ :
! E;w [W,ZL' + R,y + D; ®c + b,) - E E
: : t— A ot . S sE|
— ey 1 ¥ (Wez'+ Rey'™' +p; 0 + by) NxK Weight | |55 | _ i
1
; 711 o'+ ffoc Matrx | 155 3<
Tabel + probability ! : © © g 3
| t t—1 s o O
il il (Woz' + Roy'™ +p, © " +bo)
c-1, it (O] h,(c{') Low Compute-to-Data Ratio
| M -b d
et b T T emory-boun
label 1 PS e ——

—
—

ol T T T T T 1111

=

O Baseline performance: 98.23% accuracy (float)
Rybalkin, V., et al., Hardware Architecture of Bidirectional Long Short-Term
Memory Neural Network for Optical Character Recognition, 2017.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 67

Transprecision accelerator for BLSTM algorithm

The BLSTM AXI4 transprecision accelerator

Output layer bitwdith prercision vs accuracy

Total bits

a0 BLSTM
Transprecisiony < i
o Accelerator Y\

transprecision pipeline:
quantization of trained FP32 models to custom fixed-point, while minimizing accuracy loss.
affect final
ABCDES | or L ----------------
B oo rocessing

four streaming engines in dataflow architecture, each with different fixed-point format.
high-throughput & resource-efficient accelerator for FPGA.
precision with
80 Scanned Transprecision Datapath
fixed-point Q8.4 (interface)
dataflow .. |_|>
o s~

Weight & activation precision calibration
8-bits less
POWERS - CAPI) ——
only 0.01% Virtual Memory | | Uint32_t snae| =] AN b-_l fixed-point Q8.4
PNG Image
fixed-poi 16.9 i

fixed-point Q10.8 (interface)
fixed-point Q9.5 (processing

(D

12.1:
58.40]

1.) B
E:stsowya;g?u
|—|> Data Stream Dispatcher
9 10 11 12 13 14 15 16 17 18 19 ZO

Integer bits

0,11,12,13,14,1
Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation e [~ L= 1 [- - - . - ---m (A,B,C,D,E,F)

Architecture for near-memory
transprecision accelerators

o System stack innovation to drive Cost/Performance.

o Libraries and tools to intergrade energy-efficient
FPGA accelerators to commodity HW and SW.

Customizable Approximation
Host DMA Fixed-point library functions library

Control

Process Context

SNAP
library

Accelerated

Job Manager ~Actions”
Action 1

Action 2
.

Action 3
MMIO

) Data stream
Transprecision dispatcher

Host code and Accelerator IP

Job Queue

Data Format Controller

Run-time
Registers

Transprecision components

CAPI/OpenCAPI
enabled Xilinx
FPGA card

SNAP components

IBM POWER 8/9

server CAPI| components

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 69

Challenges in using FPGA

Dio

nysios

== Managing FPGAs in Cloud —

Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

70

Zurich Heterogenous Compute / Cloud

Pre-build OS/Application Images Pre-build OS Images
Environment Modules Docker I KVM Docker KVM
Software & Tools FPGA extensions FPGA coupling (automation WIP)

Cluster Framework (LSF) OpenStack Mitaka

RHEL7 RHEL7 / Ubuntu 16.04
Classic HPC Stack OpenStack w/ extensions for OpenStack w/ additional
Accelerators services to manage FPGAs
Homogeneous cluster (Minsky) Mix of different nodes and Prototype for Hyperscale FPGA

accelerators (x86/POWER, (Homogeneous FPGA resources)
GPU/FPGA)

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Zurich Heterogenous Compute / Cloud

zhc2.zurich.ihost.com:8002/dashboard or http://ibm.biz/supervessel ch

the? zurich.ihost.com: B0 2/ dashb oard Jauth.login/Tnest = /dash baard C Tearch ﬁ E 2 H - B - ¥ #

Don't have an account? REGISTER ACCOUNT

SuperVessel Cloud Log In

SuperVessel is a non-profit website Please pay atiention to
following tems before applying semces:

.) . , User Mame-
1. P2P software is prohibited such as BitTorrent.We seriiam

will stop semices if any P2P soflwara is found and we C LD U D .Iah##
have the right {0 resort to legzl clsims if systems ars
damaged by your action

Passward:
Please note that you shall be solely responsible for the

security of vour software, data and other assets. c LO U D 2 0 1 ? # #

3. Any confidential data are not welcome, SupeVessel
Cloud is not responsible for your confidential data

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Zurich Heterogenous Compute / Cloud

zhc2.zurich.ihost.com:8002/dashboard or http://ibm.biz/supervessel ch

e @ d- ®- % #

Don't have an account? REGISTER ACCOUNT

o A, Supervessel & More Services~
=) Clowd

& Dashboard ~
B Overview

Cwveniew

Q

Instance Name Region - Memory

Displaying 0 itermns

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

ZHC2 Yellow - system architecture

. KVM

. nodes

OpenStack Services

) Pacemaker
OpenStack Services duster for HA

Controller Node

Controller Node

nfs-export
(used for glance)

5
<
=i}
=]
oa
[17]
3
1]
=
=

VPN Server

Sdl

NIC1

authenticate against OpenStack Keystone

d

ZHC2 VPN external IPs

username/pwd

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

ZHC2 Yellow - system architecture

[‘accel |

acemaker

g o E - . luster for HA

&g E g * Nallatech 250S (Kintex KUO60 FPGA + 1.92TB M.2 NVMe SSDs +

=75 5 —_
o S o s | ¥ 4GB DDR4 SDRAM) o 8
I_ | * Alpha Data ADM-PCIE-KU3 (Kintex KUO60 FPGA + 16GB DDR3 §%‘,
— m L
SDRAM + 2 QSFP+ 40GbE) ..E ﬁ
« NVIDIA Tesla P100 (NVLINK connected Tesla P100 GPU w/ HBM1) _g,

Sdl

VPN Server

g :

ZHC2 authenticate against OpenStack Keystone

username/pwd

ZNd

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

VM Configuration

Image Store
Select:

Accelerator

OS Image
Flavor

Nova-
Scheduler
S e e Compute
start VM configure FPGA
1:5_,:"_
2 | 0,}_.
- A 173

e

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Launch Instance

Details *
Instance Boot Source * @

Launch docker image

Accelerator Type * @

&' FPGA Accolerator

Sub Accelerator Type @

CAFI

+* ku3_tapas_Scientific_Ful_v2

Q5 Type *

Architecture *

Image Name *

ubuntu

VPN access

~ 4 SuperVesse|
) Clowd

You need to install an OpenVPN
compliant VPN client, i.e.

« Tunnelblick (Mac OS)

- OpenVPN GUI (Win)

« OpenVPN (Linux)

@ client-zrl is now conne
Assigned IP: 10.2.0.6

iner Giefel

P ad e =& 8 "] % ™ @& . ds | 1239P1

Your local VPN IP: 10.2.0.x
Your instances External IP: 10.12.0.y

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Mare Services-

Instance Account

., Superviessel
Cioud

Information Instance Account Noftification

1Fud Houte Tahle

ctive Houtes:

Hatwork Destination Hetnazk Gateuay Interface Hetric
id.2.8.8 255.255.255.0 n—link 18.2.8.6 2

1A.2 .86 255255 255 255 On-link 18.2.8.6 2%
1H.2.8.25% 250.859%.2590.850 n—link 18.2.49.6 Fy)

18.12 8. 205 255 @@ iz .1 18.2 8.6 P

[Fers istent Rowbtes:
Hone

IFubh Haute Tahle

JActive Houtes:

ne
fers ickent Howbes:
siwlindous Eystenddinetsh dinterface ip show addreesses “"Local fArea Connection 3%

[Conf iguration for interface "Local Area Connection 3
DHCP enabled:

LF Addpece: 14.% A6
Subnet Prefix: 10.2 . 8-24 {mask 255L_255_255 @
Interfacelstric: z4

Using FPGAs in Heterogenous Cloud

IBM POWER Server

Load FPGA image
et onto card B e e e e e A
Hardware ﬁ VM with !-/
Development Boot VM OS attached
VM image accelerator L
. = o 2

R R S R R \-----1------’

I
I

oy

-
-

Encrypt FPGA image ""
and upload to cloud 'f
!

Cloud Infrastructure with

Heterogeneous Compute Nodes

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

FPGAs Development in ZHC2

Upload FPGA configuration to cloud image store
. Create new instance with configured FPGA attached

1.

FPGA Service

Image Upload

Image Test
OpenStack

Controller

FPGA Development m B
OpenStack m

OpenStack 2
x86 g POWERS E.
Compute Compute 5 FPGA
Node Node g

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Research insight
O Showcasing a catalyst for HPC through OpenPOWER ecosystem

®)0openPOWER . PRECOMP

Open Transprecision Computing

Energy-efficient computing through

Vibrant ecosystem through open
precision relaxation

collaborative & development

kW Emulator

Operating System

Host Application Software

PULP Virtual Platform
PULP Application Software

KW Demonstrator

Emulation-As-A-Service [o | Accelerator-As-A-Service

Emulation

OPRECOMP Library
CAPI - WED - libCXL

Shared Instruction Cache

OpenStack POWERS Node
(Docker Image @ ZHC2)

80

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Thank you

Wﬂo—hoo' :Sm almo st

Dionysios Diamantopoulos
PostDoc Researcher - Accelerator Technologies

did@zurich.ibm.com — ACTUAL WoRK TONE
+41-44-724-85-25 — PERCEPTION

The Golden Age of
FPGASs Is about to
start!

:
=
=z
3
i
%
3

w
0o
W
£
3
o
W
e_

o

FINISH
It will be fun to be part of it! TIME To CoMPLETON

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

backup

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

82

Implementation results

Instantiated up to 4-Accs on the FPGA
4421
267.1 — comparing with up to 8-POWERS cores (affinity OpenMP
169.0 threads / cores = 1:1).

1112

— saturating the available FPGA on-chip memory with 96%.

° 497 445 a1 a6

— constant speedup of 4.8-5.6x using the same
acceleration scalability step, i.e. OpenMP threads for
software and FPGA accelerators for HW.

-]
=
oo
2
5]
[T}
%)
—
v
E
=
c
[=]
=
3
Q
[}
x
[T¥]

1 2 3 4 5 6 7 8 9 10 16 32 .. “« . 9 /e
Powers (3.491 GHz) n-Cores — Minimal CPU usage of “HW solution” (interrupt-based

=@=Powers (3.491 GHz) & CAPI/KU3 (250MHz), n-Accelerators CAPI API)

= 22x energy efficiency in kPixels/Je.

= Negligible accuracy loss compared to ores/Aces 5
software (<0.6% for 3401 images). ime (Sec) || 750 446 283
= BLSTMin synthesizable C++ Kpe 827 f-;:—;"

- Algorithmic, Transp. & HLS optimizations: kJ/solution 0.36
from 8sec/image to 44ms/image

Floorplans of 1-4 BLSTM accelerators on KU3

84

