
Funded by the H2020 Framework
Programme of the European Union

© 2017 OPRECOMP – http://oprecomp.eu

17-20 July 2018
NiPS Summer School 2018
University of Perugia, Italy

Energy aware transprecision computing

FPGA programming using arbitrary precision data-types

Dionysios Diamantopoulos
IBM Research - Zurich

Co-

2© 2017 OPRECOMP – http://oprecomp.eu

Disclaimer

The views and opinions expressed in this presentation are those of the author
and do not necessarily reflect the official policy or position of IBM.

The “Dark Silicon” era

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 3

91%
At 11nm, more than 91% of silicon area is “dark”.

A look into the next 15 years

-7.9x
At 11m, more than 91% of silicon area is “dark”.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

4

CPU Throughput
We are here We are here

Source: The International Roadmap for Devices and Systems: 2017

Trends in HPC systems: Performance

Group Name / DOC ID / Month XX, 2018 / © 2018 IBM Corporation 5

Slow-down in performance growth since 2013 goes hand in hand with

• Longer system usage (~2x) and

• Concentration of capabilities at the top (relatively larger top systems)

Source: top500.org, 2018
Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Cost per transistor rising –
historic first

Dionysios Diamantopoulos / v2 / July 08-09, 2018 / © 2018 IBM Corporation 6

A “reasonably complex” SoC costs :

• $30 million at 28nm

• $271 million at 7nm

• $500 million at 5nm

- Gartner Research, semiengineering.com, 2016

6.4

5.1

3.6

2.7 2.8 2.9

90 65 40 28 20 16/14

C
o

st
 p

e
r

M
il

li
o

n
 G

a
te

s

(C
e

n
ts

)

Technology Node (nm)

Ten years of IBM SOI Technology - Challenges:

• Leakage current

• EUV lithography

• Low yield

• High cost

- IBM’s roadmap for 14nm, 10nm and 7nm

End of technology scaling

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Standard numerical formats and their hardware requirements

7

-18x -27x

Dr. Bill Dally’s NIPS 2015 tutorial “High-performance hardware for machine learning”

@TSMC 45nm

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/

Data types and quantization error

8

A hypothetical distribution of raw values (blue) and the corresponding discrete distributions resulting
from quantization (orange)

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/

Trends in HPC systems: Accelerators

Group Name / DOC ID / Month XX, 2018 / © 2018 IBM Corporation 9

• Accelerated systems get finally adopted by industrial users

• 25% of new TOP500 systems in November’17 + June’18

• Accelerators can increase performance at lower TCO for targeted workloads

Source: top500.org, 2018
Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

FPGA

Silicon alternatives for accelerators

ASICGPUCPU

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 10

Control

Unit

(CU)

Registers

Arithmetic

Logic Unit

(ALU)

FLEXIBILITY EFFICIENCY

Industry trends
create new
opportunities

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 11

Group Name / DOC ID / Month XX, 2018 / © 2018 IBM Corporation 12

Memory Technology - Options for FPGAs

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation 13

BRAM DRAM 3D Memory Flash

Capacity 10MB 16 GB 4 GB 2 TB

Bandwidth 300 GB/s 20 GB/s 128 GB/s 2 GB/s

Access Latency 5 ns 40 ns 40 ns 50,000 ns

Power / MB 1000 mW 0.5 mW 0.2 mW 0.03 mW

Flash
FPGA DRAM

3D Memory
On-Chip BRAM

Source: The Era of Accelerators, V. Prasanna, FPL 2017

Xilinx FPGAs

14

Xilinx devices are carefully crafted to

deliver the compute, efficiency, costs,

and flexibility needs of a large array of

high-performance end systems.

Xilinx achieves this balance through a

mix of hardware programmable

resources (e.g., logic, routing, and I/O)

and flexible, independent, integrated

core blocks (e.g., DSP slices and

UltraRAM), all built on leading edge

process technology, such as TSMC's

16nm FinFET process technology.

Xilinx All Programmable Devices: A Superior Platform for Compute-Intensive Systems, WP492 (v1.0.1) June 13, 2017

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Xilinx FPGAs vs other acceleration platforms

15

Xilinx devices offer the most efficient general-purpose compute platform from a raw compute perspective for fixed
precision data types. This is primarily due to the lower overhead associated with processing in Xilinx FPGA-based
architecture.

Xilinx All Programmable Devices: A Superior Platform for Compute-Intensive Systems, WP492 (v1.0.1) June 13, 2017

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

State-of-the-art DL and NVidia Reduced Precision Support

16

In an effort to keep pace with
developments in the machine learning
inference space, GPU vendors have been
making the necessary silicon changes to
support a limited set of reduced precision
data types, e.g., FP16 and INT8. For
example, the NVidia GPUs on Tesla P4
and P40 cards support INT8, providing
four INT8 operations per ALU/Cuda core.

However, machine-learning inference
benchmarks published by NVidia for
GoogLeNet v1 inference on Tesla P40 show
only a 3X improvement in efficiency for
INT8 implementation vs. a FP32
implementation, illustrating the underlining
challenges with squeezing reduced
precision support into the GPU architecture
and achieving efficient results

Xilinx All Programmable Devices: A Superior Platform for Compute-Intensive Systems, WP492 (v1.0.1) June 13, 2017

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Precision tuning: mandatory for
dealing with power & memory
wall for modern NNs

17

• With software hardware co-design, FPGA is
able to achieve 13× better energy efficiency
than state-of-the-art GPU while using 30%
power with conservative estimation.

• FPGA is a promising candidate for neural
network acceleration.

• Acceleration at bit-level dominates on power
and performance.

• Huge space for bit-width selection -> FPGAs
can offer DSE & early prototyping for arbitrary
bit-widths.

K. Guo, S. Zeng, J. Yu, Y. T. Wang, and H. Yang, “A survey of fpga based neural network
accelerator,” CoRR, vol. abs/1712.08934, 2017.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Challenges in using FPGA

18

Programming FPGAs

Integrating FPGAs into applications

Managing FPGAs in Cloud

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Hardware Productivity – Time
to switch !

19

RTL

Implement
ation

Design Closure

C Based IP

System
Integration

Impl.

RTL Based Design

High Level Synthesis
Based Design

First Design 15X Faster

Derivative Design >40X Faster

Typical QoR 0.7 – 1.2X

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

The 2020 Digital Platform … will be supported by ESL-HLS

20

• Programmable and configurable aspects
of the platform will be accessible via
convenient layers of programmability.
The current shift towards parallelism-
aware languages including C/OpenMP,
OpenCL, CUDA, AMP++, Matlab,
SystemC and OpenACC is clearly visible
and a vibrant reality among
programmers.

• Within less than 10 years ALL
computational platforms from the HPC
realm to the autonomous, omnipresent,
embedded systems will require full
support by accessible ESL-HLS tools. Source: ITRS

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Vivado HLS: Framework for
C-based IP Design

21

• C/C++ to optimized RTL IP

• C to hand-coded quality RTL–

• In weeks not months...

• Accelerated verification

• Over 100X over RTL

• Ideal for algorithmic designs

• Excels at math (floating / fixed point)

• Video, DSP...

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Vivado HLS: System IP Integration Flow

22Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Design Decisions

23

Decisions
made by
the tool

Decisions
made by
designer
❑Functionality

▪ As implicit state machine

❑Performance

▪ Latency, throughput

❑Interfaces

❑Storage architecture

▪ Memories, registers banks etc...

❑Partitioning into modules

❑Design Exploration

❑State Machine

▪ Structure, encoding

❑Pipelining

▪ Pipeline, registers allocation

❑Scheduling

▪ Memory I/O

▪ Interface I/O

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Vivado HLS: Differentiations from RTL

24Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Arbitrary precision support in commercial HLS tools

25

Xilinx Vivado HLS
Arbitrary Precision Integer Arbitrary Precision Fixed-point Floating-Point

C [u]int<W> (1-1024 bits) N/A double, float, half

C++ ap_[u]int<W> (1-1024 bits) ap_[u]fixed<W,I,Q,O,N> (1-1024 bits) double, float, half

SystemC sc_[u]int<W> (64 bits)
sc_[u]bigint<W> (512 bits)

sc_[u]fixed<W,I,Q,O,N> double, float, half

Arbitrary Precision
Integer

Arbitrary Precision Fixed-
point

Floating-Point

C/C++ ac_int<N, true/false> (1-63 bits) ac_fixed<N, I, true, Q, O> double, float

Intel HLS Compiler

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

High-Level-Synthesis

26

Scheduling & Binding Example

– In the scheduling phase of this example, HLS
schedules the following operations to occur
during each clock cycle:

• First clock cycle: Multiplication and the first
addition

• Second clock cycle: Second addition and
output generation

– In the initial binding phase of this example, HLS
implements the multiplie operation using a
combinational multiplier (Mul) and implements
both add operations using a combinational
adder/subtractor (AddSub).

– In the target binding phase, HLS implements
both the multiplier and one of the addition
operations using a DSP48 resource.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

High-Level-Synthesis

27

Extracting Control Logic and Implementing I/O Ports

– HLS automatically extracts the control logic from the
C code and creates an FSM in the RTL design to
sequence these operations.

– HLS implements the top-level function arguments
as ports in the final RTL design. The scalar variable
of type char maps into a standard 8-bit data bus
port.

– Arrays are synthesized into block RAM by default,
but other options are possible, such as FIFOs,
distributed RAM, and individual registers.

– HLS reads the data from port a with other values to
perform the calculation and generates the first y
output. The FSM ensures that the correct address
and control signals are generated to store this value
outside the block.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Advantages of Hardware Efficient Data Types

28

C-based native data types
8-bit boundaries (8, 16, 32, 64 bits)

Arbitrary

precision data

types (1…1024 bits)

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Interface synthesis

29

This example above includes:

•Two pass-by-value inputs in1 and in2.

•A pointer sum that is both read from and
written to.

•A function return, the value of temp.

•Clock and Reset ports: ap_clk and ap_rst.

• Block-Level interface protocol. These are shown expanded
in the preceding figure : ap_start, ap_done , ap_ready , and
ap_idle .

• Port Level interface protocols. These are created for each
argument in the top-level function and the function return (if
the function returns a value). In this example, these ports are:
in1 , in2 , sum_i , sum_o , sum_o_ap_vld , and ap_return.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Data Type and Interface
Synthesis Support

30

The type of interfaces that are created by
interface synthesis depend on the type of C
argument, the default interface mode, and the
INTERFACE optimization directive, using the
following abbreviations:

• D: Default interface mode for each type.

• I: Input arguments, only read.

• O: Output arguments, only written.

• I/O: Input/Output arguments, both read and
written.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Interface Synthesis and Structs

31

• The DATA_PACK optimization
directive is used for packing
all the elements of a struct
into a single wide vector. This
allows all members of the
struct to be read and written
to simultaneously.

• The first element of the struct
is aligned on the LSB of the
vector and the final element
of the struct is aligned with
the MSB of the vector.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

AXI4-Stream Interfaces

32

An AXI4-Stream interface can be applied to any input
argument and any array or pointer output argument.

AXI4-Stream interfaces are always implemented as
registered interfaces to ensure no combinational feedback
paths are created when multiple HLS IP blocks with AXI-
Stream interfaces are integrated into a larger design.

Four types of register modes are provided to control how
the AXI-Stream interface registers are implemented.

• Forward: Only the TDATA and TVALID signals are
registered.

• Reverse: Only the TREADY signal is registered.

• Both: All signals (TDATA, TREADY and TVALID) are
registered. This is the default.

• Off: None of the port signals are registered.

AXI4-Stream Interfaces Without Side-Channels

AXI4-Stream Interfaces With Side-Channels

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

AXI4-Lite Interface

33

You can use an AXI4-Lite interface to allow

the design to be controlled by a CPU or microcontroller.
Using the Vivado HLS AXI4-Lite interface, you can:

• Group multiple ports into the same AXI4-Lite interface.

• Output C driver files for use with the code running on an
embedded processor.

The standard API implementation provide functions to
perform the following operations.

• Initialize the device

• Control the device and query its status

• Read/write to the registers

• Set up, monitor, and control the interrupt

AXI4-Lite Slave Interfaces with Grouped RTL Ports

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

AXI4 Full Interface

34

You can use an AXI4 master interface on array or
pointer/reference arguments, which Vivado HLS
implements in one of the following modes:

• Individual data transfers

• Burst mode data transfers

With burst mode transfers, Vivado HLS reads or writes
data using a single base address followed by multiple
sequential data samples, which makes this mode
capable of higher data throughput. Burst mode of
operation is possible when you use the C memcpy
function or a pipelined for loop.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Design Optimization - Clock

35

Using the clock frequency and device target
information Vivado HLS estimates the timing of
operations in the design but it cannot know the final
component placement and net routing:

o these operations are performed by logic synthesis of the
output RTL. As such, Vivado HLS cannot know the exact
delays.

o By default, the clock uncertainty is 12.5% of the cycle
time. The value can be explicitly specified beside the
clock period.

o Vivado HLS aims to satisfy all constraints: timing,
throughput, latency.

o If a constraints cannot be satisfied, Vivado HLS always
outputs an RTL design

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Pipelining allows operations to happen concurrently:
each execution step does not have to complete all
operations before it begin the next operation.
Pipelining is applied to functions and loops.

There is a difference in how pipelined functions and loops
behave.

o In the case of functions, the pipeline runs forever and
never ends.

o In the case of loops, the pipeline executes until all
iterations of the loop are completed

o A pipelined function will continuously read new inputs
and write new outputs. By contrast, because a loop must
first finish all operations in the loop before starting the
next loop, a pipelined loop causes a “bubble” in the data
stream: a point when no new inputs are read as the loop
completes the execution of the final iterations, and a
point when no new outputs are written as the loop starts
new loop iterations.

Design Optimization - Throughput

36Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Design Optimization – Array
Partitioning
Arrays are implemented as block RAM which
only has a maximum of two data ports. This can
limit the throughput of a read/write (or
load/store) intensive algorithm. The bandwidth
can be improved by splitting the array (a single
block RAM resource) into multiple smaller arrays
(multiple block RAMs), effectively increasing the
number of ports. Arrays are partitioned using the
ARRAY_PARTITION directive. Vivado HLS
provides three types of array partitioning, as
shown in the following figure:

• block: The original array is split into equally sized blocks of
consecutive elements of the original array.

• cyclic: The original array is split into equally sized blocks
interleaving the elements of the original array.

• complete: The default operation is to split the array into its
individual elements. This corresponds to resolving a memory
into registers.

37Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Throughput Optimization –
Optimal Loop Unrolling to
Improve Pipelining

38

• By default loops are kept rolled in Vivado
HLS: all operations in the loop are
implemented using the same hardware
resources or iteration of the loop.

• VHLS provides the ability to unroll/ partially
for-loops using the UNROLL directive.

• Rolled Loop: each iteration is performed in a separate
clock cycle. This implementation takes four clock
cycles, only requires one multiplier and each block
RAM can be a single-port block RAM.

• Partially Unrolled Loop: two multipliers and dual-
port RAMs to support two reads or writes to each RAM
in the same clock cycle. Only takes 2 clock cycles to
complete: half the initiation interval and half the
latency of the rolled loop version.

• Unrolled loop: all loop operation can be performed in a
single clock cycle. This implementation however requires
four multipliers. More importantly, this implementation
requires the ability to perform 4 reads and 4 write
operations in the same clock cycle. Because a block RAM
only has a maximum of two ports, this implementation
requires the arrays be partitioned.

Time (clk cycles)

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Throughput Optimization –
Task Level Parallelism

39

• DATAFLOW optimization creates a parallel
process architecture and it is a powerful
method for improving design throughput and
latency.

• The channels between tasks can be simple
FIFOs for scalar variables, or ping-pong
buffers for non-scalar variables like arrays.
Each of these channels also contain signals
to indicate when the FIFO or the ping-pong
buffer is full or empty.

Sequential Functional Description

Parallel Process Architecture

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Latency Optimization –
Merging Sequential Loops

40

• All rolled loops imply and create at least one
state in the design FSM. When there are
multiple sequential loops it can create
additional unnecessary clock cycles and
prevent further optimizations.

• The LOOP_MERGE optimization directive is
used to automatically merge loops

• Merging loops allows the logic within the
loops to be optimized together. In the
example, using a dual-port block RAM allows
the add and subtraction operations to be
performed in parallel.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Area Optimization – Merging
Arrays: Horizontal Mapping

41

• When there are many small arrays in the C
Code, mapping them into a single larger array
typically reduces the number of block RAM
required.

• Each array is mapped into a block RAM or
UltraRAM, when supported by the device. The
basic block RAM unit provide in an FPGA is 18K.
If many small arrays do not use the full 18K, a
better use of the block RAM resources is map
many of the small arrays into a larger array.

• Horizontal mapping: this corresponds to
creating a new array by concatenating the
original arrays. Physically, this gets
implemented as a single array with more
elements.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Area Optimization – Merging
Arrays: Vertical Mapping

42

• When there are many small arrays in the C
Code, mapping them into a single larger array
typically reduces the number of block RAM
required.

• Each array is mapped into a block RAM or
UltraRAM, when supported by the device. The
basic block RAM unit provide in an FPGA is 18K.
If many small arrays do not use the full 18K, a
better use of the block RAM resources is map
many of the small arrays into a larger array.

• Vertical mapping: this corresponds to creating
a new array by concatenating the original words
in the array. Physically, this gets implemented
by a single array with a larger bit-width.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Area Optimization – Merging
Arrays: Reshaping

43

• The ARRAY_RESHAPE directive combines
ARRAY_PARTITIONING with the vertical mode
of ARRAY_MAP and is used to reduce the
number of block RAM while still allowing the
beneficial attributes of partitioning: parallel
access to the data.

• The ARRAY_RESHAPE directive allows more
data to be accessed in a single clock cycle. In
cases where more data can be accessed in a
single clock cycle, Vivado HLS may
automatically unroll any loops consuming this
data, if doing so will improve the throughput.

• The loop can be fully or partially unrolled to
create enough hardware to consume the
additional data in a single clock cycle.

Ideal for transprecision support !!!

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Flexpoint format

44

Flexpoint is a tensorial numerical format based on an -bit integer tensor storing mantissas in two’s
complement form, and an -bit exponent, shared across all elements of the tensor. This format is denoted as
flexN+M

Flexpoint tensor is essentially a fixed point, not floating point, tensor. Even though there is a shared
exponent, its storage and communication can be amortized over the entire tensor, a negligible overhead for
huge tensors. Most of the memory on device is used to store tensor elements with higher precision that
scales with the dimensionality of tensors https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Flexpoint format

45

• Intel devised an exponent management
algorithm called Autoflex, designed for
iterative algorithms such as stochastic
gradient descent where tensor operations,
e.g. matrix multiplication and convolution,
are performed repeatedly and outputs are
stored

• In initialization mode, exponent of a tensor
is iteratively adjusted, starting from an
initial guess, until it is proper. During
training, each operation on a tensor is
wrapped around by an adaptive exponent
management, which predicts the trend of
the tensor’s maximum absolute mantissa
value based on statistics gathered from
previous iterations in hardware buffers.

https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/
Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Flexpoint versus floating point.

46

• In all three experiments, flex16+5 achieved
close numerical parity with float32,
whereas significant performance gaps were
observed in float16 for certain cases.

• For the two convolutional networks for
image classification, misclassification errors
were significantly higher in float16 than in
float32 and flex16+5.

• In the case of Wasserstein GAN, float16
significantly deviated from float32 and
flex16+5, starting from an undertrained
discriminator; quality of generated images
was also accordingly

https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/

https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/
Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Challenges in using FPGA

47

Programming FPGAs

Integrating FPGAs into applications

Managing FPGAs in Cloud

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

What if …
… you could easily program your FPGA using C/C++
… and get x10 performance* in a few days ?

Dionysios Diamantopoulos / v2 / July 08-09, 2018 / © 2018 IBM Corporation 48

A framework for application developers to quickly and easily
create accelerated applications on POWER.

*compared to running the same C/C++ in software
Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

The CAPI – SNAP concept

49

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

Why SNAP?

50

FPGA acceleration can provide huge deployment performance benefits compared to software.

However, traditional development of an FPGA accelerator takes specialized skills (RTL) and is
quite time consuming (many month of development).

CAPI-SNAP makes it easy !

CAPI-SNAP provides the infrastructure that :

1. Allows programmers to directly port algorithms to the FPGA (e.g. C/C++->FPGA)

2. Has a simple API for the host code to call the accelerated action

3. Manage jobs during runtime (including virtualization)

4. Manages data access and put-away to/from the accelerated action during runtime

Development

Deployment

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

FPGA stack : then and now

Group Name / DOC ID / Month XX, 2018 / © 2018 IBM Corporation 51

CAPI SNAP Overview, CAPI education, 2017

CAPI-SNAP: the framework

52Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

CAPI-SNAP: the framework

53Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

CAPI-SNAP paradigms

54Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

Offload method: SHA3 kernel: FPGA is >35x faster than CPU

55Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

Funnel engine: Array intersection benchmark

56Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

Funnel engine: Array intersection benchmark

57Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

Key questions to identify candidate algorithms

58Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

SNAP enabled card details: Alpha-Data ADM-PCIE-KU3

59Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

SNAP enabled card details: Nallatech 250S

60Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

Job-Queue mode

61Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

Direct-access mode

62Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

Define your API parameters

63Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Define your API parameters

64Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017

Common Scenarios for accelerators (NN example)

65Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

The Brainwave project, 2017

Common Scenarios for accelerators (NN example)

66

Use transprecision storage and processing to
accommodate persistent accelerators on the FPGA
resources

DRAM read energy much higher
than FPGA processing

Model
Parameters
Initialized in

DRAM

Model Parameters
Stored in on-chip

BRAMs

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

The Brainwave project, 2017

Bidirectional Long-Short Term Memory based OCR

67

Rybalkin, V., et al., Hardware Architecture of Bidirectional Long Short-Term

Memory Neural Network for Optical Character Recognition, 2017.

❑ Input: Image of one Text-Line

❑ Algorithm:

▪ FW and BW pass to updated LSTM cells

▪ Merge and produce final prediction

❑ Output: Detected text sequence

❑ Baseline performance: 98.23% accuracy (float)

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Transprecision accelerator for BLSTM algorithm

Group Name / DOC ID / Month XX, 2018 / © 2018 IBM Corporation 68

8-bits less
affect final
precision with
only 0.01%

The BLSTM AXI4 transprecision accelerator
transprecision pipeline:

four streaming engines in dataflow architecture, each with different fixed-point format.
Weight & activation precision calibration

quantization of trained FP32 models to custom fixed-point, while minimizing accuracy loss.
high-throughput & resource-efficient accelerator for FPGA.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Architecture for near-memory
transprecision accelerators

69

o System stack innovation to drive Cost/Performance.

o Libraries and tools to intergrade energy-efficient
FPGA accelerators to commodity HW and SW.

DDR BRAM

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Challenges in using FPGA

70

Programming FPGAs

Integrating FPGAs into applications

Managing FPGAs in Cloud

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Zurich Heterogenous Compute / Cloud

71Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Zurich Heterogenous Compute / Cloud

72Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Zurich Heterogenous Compute / Cloud

73Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

ZHC2 Yellow - system architecture

74Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

ZHC2 Yellow - system architecture

75Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

76Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

77

VPN access

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

78

Using FPGAs in Heterogenous Cloud

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

79

FPGAs Development in ZHC2

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Group Name / DOC ID / Month XX, 2018 / © 2018 IBM Corporation 80

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

Thank you

Dionysios Diamantopoulos
PostDoc Researcher - Accelerator Technologies
—
did@zurich.ibm.com
+41-44-724-85-25

The Golden Age of
FPGAs is about to

start!

It will be fun to be part of it!

81Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

82

backup

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

83© 2017 OPRECOMP – http://oprecomp.eu

Implementation results

Instantiated up to 4-Accs on the FPGA

– comparing with up to 8-POWER8 cores (affinity OpenMP
threads / cores = 1:1).

– saturating the available FPGA on-chip memory with 96%.

– constant speedup of 4.8-5.6x using the same
acceleration scalability step, i.e. OpenMP threads for
software and FPGA accelerators for HW.

– Minimal CPU usage of “HW solution” (interrupt-based
CAPI API).

▪ 22x energy efficiency in kPixels/Je.

▪ Negligible accuracy loss compared to
software (<0.6% for 3401 images).

▪ BLSTM in synthesizable C++

- Algorithmic, Transp. & HLS optimizations:
from 8sec/image to 44ms/image

84© 2017 OPRECOMP – http://oprecomp.eu

Floorplans of 1-4 BLSTM accelerators on KU3

