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The “Dark Silicon” era
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91%
At 11nm, more than 91% of silicon area is “dark”.



A look into the next 15 years

-7.9x 
At 11m, more than 91% of silicon area is “dark”.
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CPU Throughput
We are here We are here

Source: The International Roadmap for Devices and Systems: 2017



Trends in HPC systems: Performance
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Slow-down in performance growth since 2013 goes hand in hand with 

• Longer system usage (~2x) and 

• Concentration of capabilities at the top (relatively larger top systems) 

Source: top500.org, 2018
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Cost per transistor rising –
historic first
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A “reasonably complex” SoC costs :

• $30 million at 28nm

• $271 million at 7nm

• $500 million at 5nm

- Gartner Research, semiengineering.com, 2016
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Ten years of IBM SOI Technology - Challenges:

• Leakage current 

• EUV lithography

• Low yield

• High cost

- IBM’s roadmap for 14nm, 10nm and 7nm

End of technology scaling

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Standard numerical formats and their hardware requirements
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-18x -27x

Dr. Bill Dally’s NIPS 2015 tutorial “High-performance hardware for machine learning”

@TSMC 45nm
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https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/

Data types and quantization error

8

A hypothetical distribution of raw values (blue) and the corresponding discrete distributions resulting 
from quantization (orange)
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https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/



Trends in HPC systems: Accelerators
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• Accelerated systems get finally adopted by industrial users

• 25% of new TOP500 systems in November’17 + June’18

• Accelerators can increase performance at lower TCO for targeted workloads

Source: top500.org, 2018
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FPGA

Silicon alternatives for accelerators

ASICGPUCPU
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Control 
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FLEXIBILITY EFFICIENCY



Industry trends 
create new 
opportunities 
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Memory Technology - Options for FPGAs
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BRAM DRAM 3D Memory Flash

Capacity 10MB 16 GB 4 GB 2 TB

Bandwidth 300 GB/s 20 GB/s 128 GB/s 2 GB/s

Access Latency 5 ns 40 ns 40 ns 50,000 ns

Power / MB 1000 mW 0.5 mW 0.2 mW 0.03 mW

Flash
FPGA DRAM

3D Memory
On-Chip BRAM

Source: The Era of Accelerators, V. Prasanna, FPL 2017



Xilinx FPGAs

14

Xilinx devices are carefully crafted to 

deliver the compute, efficiency, costs, 

and flexibility needs of a large array of 

high-performance end systems. 

Xilinx achieves this balance through a 

mix of hardware programmable 

resources (e.g., logic, routing, and I/O) 

and flexible, independent, integrated 

core blocks (e.g., DSP slices and 

UltraRAM), all built on leading edge 

process technology, such as TSMC's 

16nm FinFET process technology. 

Xilinx All Programmable Devices: A Superior Platform for Compute-Intensive Systems, WP492 (v1.0.1) June 13, 2017
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Xilinx FPGAs vs other acceleration platforms
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Xilinx devices offer the most efficient general-purpose compute platform from a raw compute perspective for fixed 
precision data types. This is primarily due to the lower overhead associated with processing in Xilinx FPGA-based 
architecture. 

Xilinx All Programmable Devices: A Superior Platform for Compute-Intensive Systems, WP492 (v1.0.1) June 13, 2017
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State-of-the-art DL and NVidia Reduced Precision Support
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In an effort to keep pace with 
developments in the machine learning 
inference space, GPU vendors have been 
making the necessary silicon changes to 
support a limited set of reduced precision 
data types, e.g., FP16 and INT8. For 
example, the NVidia GPUs on Tesla P4 
and P40 cards support INT8, providing 
four INT8 operations per ALU/Cuda core.

However, machine-learning inference 
benchmarks published by NVidia for 
GoogLeNet v1 inference on Tesla P40 show 
only a 3X improvement in efficiency for 
INT8 implementation vs. a FP32 
implementation, illustrating the underlining 
challenges with squeezing reduced 
precision support into the GPU architecture 
and achieving efficient results

Xilinx All Programmable Devices: A Superior Platform for Compute-Intensive Systems, WP492 (v1.0.1) June 13, 2017
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Precision tuning: mandatory for 
dealing with power & memory 
wall for modern NNs
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• With software hardware co-design, FPGA is 
able to achieve 13× better energy efficiency 
than state-of-the-art GPU while using 30% 
power with conservative estimation. 

• FPGA is a promising candidate for neural 
network acceleration.

• Acceleration at bit-level dominates on power 
and performance.

• Huge space for bit-width selection -> FPGAs 
can offer DSE & early prototyping for arbitrary 
bit-widths.

K. Guo, S. Zeng, J. Yu, Y. T. Wang, and H. Yang, “A survey of fpga based neural network 
accelerator,” CoRR, vol. abs/1712.08934, 2017.
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Challenges in using FPGA
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Programming FPGAs

Integrating FPGAs into applications

Managing FPGAs in Cloud
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Hardware Productivity – Time 
to switch !
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RTL

Implement
ation

Design Closure

C Based IP

System 
Integration

Impl.

RTL Based Design

High Level Synthesis 
Based Design

First Design 15X Faster

Derivative Design >40X Faster

Typical QoR 0.7 – 1.2X
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The 2020 Digital Platform  …   will be supported by ESL-HLS

20

• Programmable and configurable aspects 
of the platform will be accessible via 
convenient layers of programmability. 
The current shift towards parallelism-
aware languages including C/OpenMP, 
OpenCL, CUDA, AMP++, Matlab, 
SystemC and OpenACC is clearly visible 
and a vibrant reality among 
programmers.

• Within less than 10 years ALL 
computational platforms from the HPC 
realm to the autonomous, omnipresent, 
embedded systems will require full 
support by accessible ESL-HLS tools. Source: ITRS

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Vivado HLS: Framework for 
C-based IP Design

21

• C/C++ to optimized RTL IP

• C to hand-coded quality RTL–

• In weeks not months...

• Accelerated verification

• Over 100X over RTL

• Ideal for algorithmic designs

• Excels at math (floating / fixed point)

• Video, DSP... 
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Vivado HLS: System IP Integration Flow
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Design Decisions

23

Decisions 
made by 
the tool

Decisions 
made by 
designer
❑Functionality

▪ As implicit state machine

❑Performance

▪ Latency, throughput

❑Interfaces

❑Storage architecture

▪ Memories, registers banks etc...

❑Partitioning into modules

❑Design Exploration

❑State Machine

▪ Structure, encoding

❑Pipelining

▪ Pipeline, registers allocation

❑Scheduling

▪ Memory I/O

▪ Interface I/O

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Vivado HLS: Differentiations from RTL
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Arbitrary precision support in commercial HLS tools
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Xilinx Vivado HLS
Arbitrary Precision Integer Arbitrary Precision Fixed-point Floating-Point

C [u]int<W> (1-1024 bits) N/A double, float, half

C++ ap_[u]int<W> (1-1024 bits) ap_[u]fixed<W,I,Q,O,N> (1-1024 bits) double, float, half

SystemC sc_[u]int<W> (64 bits)
sc_[u]bigint<W> (512 bits)

sc_[u]fixed<W,I,Q,O,N> double, float, half

Arbitrary Precision 
Integer

Arbitrary Precision Fixed-
point

Floating-Point

C/C++ ac_int<N, true/false> (1-63 bits) ac_fixed<N, I, true, Q, O> double, float

Intel HLS Compiler

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



High-Level-Synthesis 

26

Scheduling & Binding Example

– In the scheduling phase of this example, HLS 
schedules the following operations to occur 
during each clock cycle:

• First clock cycle: Multiplication and the first 
addition

• Second clock cycle: Second addition and 
output generation

– In the initial binding phase of this example, HLS 
implements the multiplie operation using a 
combinational multiplier (Mul) and implements 
both add operations using a combinational 
adder/subtractor (AddSub). 

– In the target binding phase, HLS implements 
both the multiplier and one of the addition 
operations using a DSP48 resource. 

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



High-Level-Synthesis

27

Extracting Control Logic and Implementing I/O Ports

– HLS automatically extracts the control logic from the 
C code and creates an FSM in the RTL design to 
sequence these operations. 

– HLS implements the top-level function arguments 
as ports in the final RTL design. The scalar variable 
of type char maps into a standard 8-bit data bus 
port.

– Arrays are synthesized into block RAM by default, 
but other options are possible, such as FIFOs, 
distributed RAM, and individual registers. 

– HLS reads the data from port a with other values to 
perform the calculation and generates the first y 
output. The FSM ensures that the correct address 
and control signals are generated to store this value 
outside the block.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Advantages of Hardware Efficient Data Types
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C-based native data types 
8-bit boundaries (8, 16, 32, 64 bits)

Arbitrary 

precision data 

types (1…1024 bits)
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Interface synthesis

29

This example above includes:

•Two pass-by-value inputs in1 and in2.

•A pointer sum that is both read from and 
written to.

•A function return, the value of temp.

•Clock and Reset ports: ap_clk and  ap_rst.

• Block-Level interface protocol. These are shown expanded 
in the preceding figure : ap_start,  ap_done ,  ap_ready , and  
ap_idle .

• Port Level interface protocols. These are created for each 
argument in the top-level function and the function return (if 
the function returns a value). In this example, these ports are:  
in1 ,  in2 ,  sum_i ,  sum_o ,  sum_o_ap_vld , and  ap_return.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Data Type and Interface 
Synthesis Support

30

The type of interfaces that are created by 
interface synthesis depend on the type of C 
argument, the default interface mode, and the 
INTERFACE optimization directive, using the 
following abbreviations:

• D: Default interface mode for each type.

• I: Input arguments, only read.

• O: Output arguments, only written.

• I/O: Input/Output arguments, both read and 
written.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Interface Synthesis and Structs

31

• The DATA_PACK optimization 
directive is used for packing 
all the elements of a struct 
into a single wide vector. This 
allows all members of the 
struct to be read and written 
to simultaneously. 

• The first element of the struct 
is aligned on the LSB of the 
vector and the final element 
of the struct is aligned with 
the MSB of the vector. 

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



AXI4-Stream Interfaces

32

An AXI4-Stream interface can be applied to any input 
argument and any array or pointer output argument. 

AXI4-Stream interfaces are always implemented as 
registered interfaces to ensure no combinational feedback 
paths are created when multiple HLS IP blocks with AXI-
Stream interfaces are integrated into a larger design.

Four types of register modes are provided to control how 
the AXI-Stream interface registers are implemented.

• Forward: Only the TDATA and TVALID signals are 
registered.

• Reverse: Only the TREADY signal is registered.

• Both: All signals (TDATA, TREADY and TVALID) are  
registered. This is the default.

• Off: None of the port signals are registered.

AXI4-Stream Interfaces Without Side-Channels

AXI4-Stream Interfaces With Side-Channels

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



AXI4-Lite Interface

33

You can use an AXI4-Lite interface to allow 

the design to be controlled by a CPU or microcontroller. 
Using the Vivado HLS AXI4-Lite interface, you can:

• Group multiple ports into the same AXI4-Lite interface.

• Output C driver files for use with the code running on an 
embedded processor.

The standard API implementation provide functions to 
perform the following operations.

• Initialize the device 

• Control the device and query its status

• Read/write to the registers 

• Set up, monitor, and control the interrupt

AXI4-Lite Slave Interfaces with Grouped RTL Ports

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



AXI4 Full Interface

34

You can use an AXI4 master interface on array or 
pointer/reference arguments, which Vivado HLS 
implements in one of the following modes:

• Individual data transfers

• Burst mode data transfers

With burst mode transfers, Vivado HLS reads or writes 
data using a single base address followed by multiple 
sequential data samples, which makes this mode 
capable of higher data throughput. Burst mode of 
operation is possible when you use the C memcpy
function or a pipelined for loop.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Design Optimization - Clock

35

Using the clock frequency and device target 
information Vivado HLS estimates the timing of 
operations in the design but it cannot know the final 
component placement and net routing: 

o these operations are performed by logic synthesis of the 
output RTL. As such, Vivado HLS cannot know the exact 
delays.

o By default, the clock uncertainty is 12.5% of the cycle 
time. The value can be explicitly specified beside the 
clock period.

o Vivado HLS aims to satisfy all constraints: timing, 
throughput, latency. 

o If a constraints cannot be satisfied, Vivado HLS always 
outputs an RTL design

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Pipelining allows operations to happen concurrently: 
each execution step does not have to complete all 
operations before it begin the next operation. 
Pipelining is applied to functions and loops.

There is a difference in how pipelined functions and loops 
behave.

o In the case of functions, the pipeline runs forever and 
never ends.

o In the case of loops, the pipeline executes until all 
iterations of the loop are completed

o A pipelined function will continuously read new inputs 
and write new outputs. By contrast, because a loop must 
first finish all operations in the loop before starting the 
next loop, a pipelined loop causes a “bubble” in the data 
stream: a point when no new inputs are read as the loop 
completes the execution of the final iterations, and a 
point when no new outputs are written as the loop starts 
new loop iterations.

Design Optimization - Throughput
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Design Optimization – Array 
Partitioning
Arrays are implemented as block RAM which 
only has a maximum of two data ports. This can 
limit the throughput of a read/write (or 
load/store) intensive algorithm. The bandwidth 
can be improved by splitting the array (a single 
block RAM resource) into multiple smaller arrays 
(multiple block RAMs), effectively increasing the 
number of ports. Arrays are partitioned using the 
ARRAY_PARTITION directive. Vivado HLS 
provides three types of array partitioning, as 
shown in the following figure:

• block: The original array is split into equally sized blocks of 
consecutive elements of the original array.

• cyclic: The original array is split into equally sized blocks 
interleaving the elements of the original array.

• complete: The default operation is to split the array into its 
individual elements. This corresponds to resolving a memory 
into registers.

37Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Throughput Optimization –
Optimal Loop Unrolling to 
Improve Pipelining

38

• By default loops are kept rolled in Vivado
HLS: all operations in the loop are 
implemented using the same hardware 
resources  or iteration of the loop.

• VHLS provides the ability to unroll/ partially 
for-loops using the UNROLL directive.

• Rolled Loop: each iteration is performed in a separate 
clock cycle. This implementation takes four clock 
cycles, only requires one multiplier and each block 
RAM can be a single-port block RAM.

• Partially Unrolled Loop: two multipliers and dual-
port RAMs to support two reads or writes to each RAM 
in the same clock cycle. Only takes 2 clock cycles to 
complete: half the initiation interval and half the 
latency of the rolled loop version.

• Unrolled loop: all loop operation can be performed in a 
single clock cycle. This implementation however requires 
four multipliers. More importantly, this implementation 
requires the ability to perform 4 reads and 4 write 
operations in the same clock cycle. Because a block RAM 
only has a maximum of two ports, this implementation 
requires the arrays be partitioned.

Time (clk cycles)

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Throughput Optimization –
Task Level Parallelism

39

• DATAFLOW optimization creates a parallel 
process architecture and it is a powerful 
method for improving design throughput and 
latency.

• The channels between tasks can be simple 
FIFOs for scalar variables, or ping-pong 
buffers for non-scalar variables like arrays. 
Each of these channels also contain signals 
to indicate when the FIFO or the ping-pong 
buffer is full or empty. 

Sequential Functional Description

Parallel Process Architecture

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Latency Optimization –
Merging Sequential Loops

40

• All rolled loops imply and create at least one 
state in the design FSM. When there are 
multiple sequential loops it can create 
additional unnecessary clock cycles and 
prevent further optimizations.

• The LOOP_MERGE optimization directive is 
used to automatically merge loops

• Merging loops allows the logic within the 
loops to be optimized together. In the 
example, using a dual-port block RAM allows 
the add and subtraction operations to be 
performed in parallel.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Area Optimization – Merging 
Arrays: Horizontal Mapping

41

• When there are many small arrays in the C 
Code, mapping them into a single larger array 
typically reduces the number of block RAM 
required.

• Each array is mapped into a block RAM or 
UltraRAM, when supported by the device. The 
basic block RAM unit provide in an FPGA is 18K. 
If many small arrays do not use the full 18K, a 
better use of the block RAM resources is map 
many of the small arrays into a larger array. 

• Horizontal mapping: this corresponds to 
creating a new array by concatenating the 
original arrays. Physically, this gets 
implemented as a single array with more 
elements.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Area Optimization – Merging 
Arrays: Vertical Mapping

42

• When there are many small arrays in the C 
Code, mapping them into a single larger array 
typically reduces the number of block RAM 
required.

• Each array is mapped into a block RAM or 
UltraRAM, when supported by the device. The 
basic block RAM unit provide in an FPGA is 18K. 
If many small arrays do not use the full 18K, a 
better use of the block RAM resources is map 
many of the small arrays into a larger array.

• Vertical mapping: this corresponds to creating 
a new array by concatenating the original words 
in the array. Physically, this gets implemented 
by a single array with a larger bit-width.

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Area Optimization – Merging 
Arrays: Reshaping

43

• The ARRAY_RESHAPE directive combines 
ARRAY_PARTITIONING with the vertical mode 
of ARRAY_MAP and is used to reduce the 
number of block RAM while still allowing the 
beneficial attributes of partitioning: parallel 
access to the data. 

• The ARRAY_RESHAPE directive allows more 
data to be accessed in a single clock cycle. In 
cases where more data can be accessed in a 
single clock cycle, Vivado HLS may 
automatically unroll any loops consuming this 
data, if doing so will improve the throughput. 

• The loop can be fully or partially unrolled to 
create enough hardware to consume the 
additional data in a single clock cycle.

Ideal for transprecision support !!!

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Flexpoint format

44

Flexpoint is a tensorial numerical format based on an -bit integer tensor storing mantissas in two’s 
complement form, and an -bit exponent, shared across all elements of the tensor.  This format is denoted as 
flexN+M

Flexpoint tensor is essentially a fixed point, not floating point, tensor. Even though there is a shared 
exponent, its storage and communication can be amortized over the entire tensor, a negligible overhead for 
huge tensors. Most of the memory on device is used to store tensor elements with higher precision that 
scales with the dimensionality of tensors https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/
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Flexpoint format

45

• Intel devised an exponent management 
algorithm called Autoflex, designed for 
iterative algorithms such as stochastic 
gradient descent where tensor operations, 
e.g. matrix multiplication and convolution, 
are performed repeatedly and outputs are 
stored

• In initialization mode, exponent of a tensor 
is iteratively adjusted, starting from an 
initial guess, until it is proper. During 
training, each operation on a tensor is 
wrapped around by an adaptive exponent 
management, which predicts the trend of 
the tensor’s maximum absolute mantissa 
value based on statistics gathered from 
previous iterations in hardware buffers.

https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/
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Flexpoint versus floating point.

46

• In all three experiments, flex16+5 achieved 
close numerical parity with float32, 
whereas significant performance gaps were 
observed in float16 for certain cases.

• For the two convolutional networks for 
image classification, misclassification errors 
were significantly higher in float16 than in 
float32 and flex16+5. 

• In the case of Wasserstein GAN, float16 
significantly deviated from float32 and 
flex16+5, starting from an undertrained 
discriminator; quality of generated images 
was also accordingly 

https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/

https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/
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Challenges in using FPGA

47

Programming FPGAs

Integrating FPGAs into applications

Managing FPGAs in Cloud
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What if …
… you could easily program your FPGA using C/C++
… and get x10 performance* in a few days ?

Dionysios Diamantopoulos / v2 / July 08-09, 2018 / © 2018 IBM Corporation 48

A framework for application developers to quickly and easily 
create accelerated applications  on POWER.

*compared to running the same C/C++ in software
Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017



The CAPI – SNAP concept

49

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017



Why SNAP?

50

FPGA acceleration can provide huge deployment performance benefits compared to software.

However, traditional development of an FPGA accelerator takes specialized skills (RTL) and is 
quite time consuming (many month of development).

CAPI-SNAP makes it easy !

CAPI-SNAP provides the infrastructure that :

1. Allows programmers to directly port algorithms to the FPGA (e.g. C/C++->FPGA)

2. Has a simple API for the host code to call the accelerated action

3. Manage jobs during runtime (including virtualization)

4. Manages data access and put-away to/from the accelerated action during runtime

Development

Deployment

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



FPGA stack : then and now
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CAPI SNAP Overview, CAPI education, 2017



CAPI-SNAP: the framework
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CAPI SNAP Overview, CAPI education, 2017



CAPI-SNAP: the framework
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CAPI SNAP Overview, CAPI education, 2017



CAPI-SNAP paradigms
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CAPI SNAP Overview, CAPI education, 2017



Offload method: SHA3 kernel: FPGA is >35x faster than CPU
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CAPI SNAP Overview, CAPI education, 2017



Funnel engine: Array intersection benchmark
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CAPI SNAP Overview, CAPI education, 2017



Funnel engine: Array intersection benchmark
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CAPI SNAP Overview, CAPI education, 2017



Key questions to identify candidate algorithms
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CAPI SNAP Overview, CAPI education, 2017



SNAP enabled card details: Alpha-Data ADM-PCIE-KU3

59Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation

CAPI SNAP Overview, CAPI education, 2017



SNAP enabled card details: Nallatech 250S
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CAPI SNAP Overview, CAPI education, 2017



Job-Queue mode
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CAPI SNAP Overview, CAPI education, 2017



Direct-access mode
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Define your API parameters
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Define your API parameters
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Common Scenarios for accelerators (NN example)
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Common Scenarios for accelerators (NN example)
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Use transprecision storage and processing to 
accommodate persistent accelerators on the FPGA 
resources

DRAM read energy much higher 
than FPGA processing

Model 
Parameters 
Initialized in 

DRAM

Model Parameters 
Stored in on-chip 

BRAMs
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Bidirectional Long-Short Term Memory based OCR
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Rybalkin, V., et al., Hardware Architecture of Bidirectional Long Short-Term 

Memory Neural Network for Optical Character Recognition, 2017.

❑ Input: Image of one Text-Line

❑ Algorithm:

▪ FW and BW pass to updated LSTM cells

▪ Merge and produce final prediction

❑ Output: Detected text sequence

❑ Baseline performance: 98.23% accuracy (float)

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Transprecision accelerator for BLSTM algorithm
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8-bits less 
affect final 
precision with 
only 0.01%

The BLSTM AXI4 transprecision accelerator 
transprecision pipeline: 

four streaming engines in dataflow architecture, each with different fixed-point format.
Weight & activation precision calibration

quantization of trained FP32 models to custom fixed-point, while minimizing accuracy loss.
high-throughput & resource-efficient accelerator for FPGA.
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Architecture for near-memory 
transprecision accelerators
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o System stack innovation to drive Cost/Performance.

o Libraries and tools to intergrade energy-efficient 
FPGA accelerators to commodity HW and SW.

DDR BRAM
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Challenges in using FPGA
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Programming FPGAs

Integrating FPGAs into applications

Managing FPGAs in Cloud
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Zurich Heterogenous Compute / Cloud
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Zurich Heterogenous Compute / Cloud

72Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



Zurich Heterogenous Compute / Cloud
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ZHC2 Yellow - system architecture

74Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



ZHC2 Yellow - system architecture
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VPN access
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Using FPGAs in Heterogenous Cloud

Dionysios Diamantopoulos / v2 / July 20, 2018 / © 2018 IBM Corporation



79

FPGAs Development in ZHC2
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Thank you

Dionysios Diamantopoulos
PostDoc Researcher - Accelerator Technologies
—
did@zurich.ibm.com
+41-44-724-85-25

The Golden Age of 
FPGAs is about to 

start!

It will be fun to be part of it!
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backup
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Implementation results

Instantiated up to 4-Accs on the FPGA

– comparing with up to 8-POWER8 cores (affinity OpenMP 
threads / cores = 1:1).

– saturating the available FPGA on-chip memory with 96%.

– constant speedup of 4.8-5.6x using the same 
acceleration scalability step, i.e. OpenMP threads for 
software and FPGA accelerators for HW. 

– Minimal CPU usage of “HW solution” (interrupt-based 
CAPI API). 

▪ 22x energy efficiency in kPixels/Je.

▪ Negligible accuracy loss compared to 
software (<0.6% for 3401 images).

▪ BLSTM in synthesizable C++

- Algorithmic, Transp. & HLS optimizations: 
from 8sec/image to 44ms/image 
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Floorplans of 1-4 BLSTM accelerators on KU3


