Design flow for energy harvesting enabled devices

Dr. Francesco Orfei

NiPS Lab, Dept. of Physics, University of Perugia, IT francesco.orfei@nipslab.org

Index

- What's System Integration?
- Why Energy Harvesting?
- Sources of energy
- Powering issues
- Mechanical design
- An examples of integrated system

What's system integration?

WIKIPEDIA The Free Encyclopedia

Main page Contents Featured content Current events Random article Donate to Wikipedia Wikipedia store

Interaction Help About Wikipedia Community portal

Recent changes Contact page

Tools

What links here

Article Talk

System integration

From Wikipedia, the free encyclopedia

System integration is defined in engineering as the process of bringing together the component sub-systems into one system (an aggregation of subsystems cooperating so that the system is able to deliver the overarching functionality) and ensuring that the subsystems function together as a system,^[1] and in information technology^[2] as the process of linking together different computing systems and software applications physically or functionally,^[3] to act as a coordinated whole.

The system integrator integrates discrete systems utilizing a variety of techniques such as computer networking, enterprise application integration, business process management or manual programming.^[4]

System integration involves integrating existing, often disparate systems in such a way "that focuses on increasing value to the customer"^[5] (e.g., improved product quality and performance) while at the same time providing value to the company (e.g., reducing operational costs and improving response time).^[5] In the modern world connected by Internet, the role of system integration engineers is important: more and more systems are designed to connect, both within the system under construction and to systems that are already deployed.^[6]

Not

View his

Read

Edit

What's system integration?

Ex. 1: fitness tracker

What's system integration?

Ex. 2: weather station - sensors

((•)) 🐻 Umbertide IUMBERT19 About this PARS | Report | Comments

Forecast for Umberlide, IT > 43.311 12.368 > 391 m

PWS Data PWS Widgets WunderStation

PWS viewed 3 times since Maggio 1, 2018

Current Conditions Station reported 3 minutes and

0.5
km/h

Vento da North Gusts 6.1 km/h

Raggi UV:	0
Solar:	
Soil Moisture:	63
Soil Temp:	
Leaf Wetness:	

https://www.wunderground.com/p ersonal-weatherstation/dashboard?ID=IUMBERTI 9

Index

- What's System Integration?
- Why Energy Harvesting?
- Sources of energy
- Powering issues
- Mechanical design
- An examples of integrated system

Ex. 1: tyre pressure monitoring

Ex. 2: extended structures monitoring

Golden Gate Bridge, San Francisco, California, USA Total length: 8.981 ft (2,737.4 m) Height: 746 ft (227.4 m)

Ex. 3: large open and wild area

Point Reyes National Seashore, California, USA Area: 111 mi² (71,028 acres - 287.44 km²)[[]

Ex. 4: big cities

Los Angeles, California, USA Area: 503 mi² (1302 km²) - Population (2015) 18,679,763 NiPS -ENABLES Summer School, Perugia 17-20 July 2018

\$250

Energy Harvesting module market forecast by application (in M\$)

https://industrytoday.co.uk/agriculture/energy-harvesting-system-market-demand--growth-factors-latest-rising-trend--forecast-to-2025

https://www.i-micronews.com/category-listing/product/emerging-energy-harvesting-devices.html NiPS – ENABLES Summer School, Perugia 17-20 July 2018

Index

- What's IoT Internet of Things?
- Why Energy Harvesting?
- Sources of energy
- Powering issues
- Mechanical design
- An example of integrated system

NiPS - ENABLES Summer School, Perugia 17-20 July 2018

Sources of energy

U.S. energy consumption by source, 2016

Ø	biomass renewable heating, electricity, transp	4.9%			petroleum nonrenewable transportation, manufac	36.9% turing	
	hydropower renewable electricity	2.5%		6	natural gas nonrenewable heating, manufacturing,	29.2% electricity	
	geothermal renewable heating, electricity	0.2%		À	coal nonrenewable electricity, manufacturing	14.6%	
人	wind renewable electricity	2.2%	0	8	uranium nonrenewable electricity	8.6%	
**	solar & other renewable light, heating, electricity	0.6%	, o o	Re natur	newable energy s rally replenished	ources: regularly!	!
Sum of individual percentages may not equal 100 because of independent rounding. Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3, April 2017, preliminary data							
https://www.eia.gov/energyexplained/index.php?page=about_sources_of_energy NiPS -ENABLES Summer School, Perugia 17-20 July 2018							

Sources of energy

What about EH sources?

Energy Source	Challenge	Typical Electrical Impedance	Typical Voltage	Typical Power Output
Light	Conform to small surface area; wide input voltage range	Varies with light input Low kΩ to 10s of kΩ	DC: 0.5V to 5V [Depends on number of cells in array]	10µW-15mW (Outdoors: 0.15mW-15mW) (Indoors: <500µW)
Vibrational	Variability of vibrational frequency	Constant impedance 10s of kΩ to 100kΩ	AC: 10s of volts	1µW-20mW
Thermal	Small thermal gradients; efficient heat sinking	Constant impedance 1Ω to 100s of Ω	DC: 10s of mV to 10V	0.5mW-10mW (20°C gradient)
RF & Inductive	Coupling & rectification	Constant impedance Low kΩs	AC: Varies with distance and power 0.5V to 5V	Wide range

Sources of energy

- RF: 0.1μW/cm²
- Vibration: 1nW/cm²
- Thermal: 10mW/cm²
- Photovoltaic: 100mW/cm²

Energy Harvesters become more capable

- RF: 0.01mV
- Vibration: 0.1 ~ 0.4 V
- Thermal: 0.02~1.0 V

Electro Magnetic Rotation

- Photovoltaic:
- 0.5 ~ 0.7 V typ./cell

IMAGE CREDIT: Mike Hayes, "Synergies between Energy Harvesting and Power Electronics," Tyndall National Institute, IEEE PELS Young Professionals Webinar, October 20, 2016.

ERASMUS+ IESRES, Ankara, Turkey - May 7-11, 2018

Index

- What's IoT Internet of Things?
- Why Energy Harvesting?
- Sources of energy
- Powering issues
- Power management
- An example from the market

Articoli accademici per energy harvesting powering issues

Power management in energy harvesting sensor ... - Kansal - Citato da 1295

Energy harvesting technologies - Priya - Citato da 1208

... circuit for non-linear energy harvesting with low voltage ... - Lallart - Citato da 216

Special Issue on Energy Harvesting and Power ... - IEEE Xplore

https://ieeexplore.ieee.org/iel7/7756/7310795/07310812.pdf - Traduci questa pagina di S Patel - 2015

Special Issue on Energy. Harvesting and Power. Management. For over half a century, we have seen astonishing increases in the computational, storage, and.

Special Issue on Energy Harvesting in Wireless Networks - IEEE Xplore

https://ieeexplore.ieee.org/iel5/5449605/.../06253077.pdf ▼ Traduci questa pagina di S Ulukus - 2012 - Citato da 2 - Articoli correlati

issues as it powers mobile devices and, in general, wireless networks by ... In "Sum-rate optimal power policies for energy harvesting transmitters in an ...

Power requirements for different RF technologies.

	EnOcean	Z-Wave	ZigBee	Wireless Hart	Bluetooth LE	Bluetooth	Wi-Fi
Industry Organizations	EnOcean Alliance	Z-Wave Alliance	ZigBee Alliance	HART	Bluetooth SIG	Bluetooth SIG	Wi-Fi Alliance
Frequency Band	315MHz, 868MHz, 900MHz, 920MHz	900MHz	868MHz, 915MHz, 2.4GHz	2.4GHz	2.4GHz	2.4GHz	2.4GHz,5.8GHz
Data Rate	Low	Low	Low	Low	Medium	High	Very High
Range (Depends on RF power)	~50m,~300m	~30m	~100m	~250m	~50m	~100m	~100m
Power Consumption	Very Low	Medium	Very Low	Very Low	Very Low	Low	High
Application	HEMS. BEMS	Sensor NW. HEMS	Sensor NW, HEMS,BEMS, Factory Automation	Factory Automation	NotePC, Smart Phone, Wearable, Medical, Sensor NW, HEMS, BEMS	NotePC, Smart Phone, PC peripheral	PC, Smart Phone, Digital AV, Indoor/Outdoor NW
Suitable for Energy Harvesting?	Very Good	Good	Very Good	Very Good	Very Good	Not Bad	Bad

http://core.spansion.com/article/energy-harvesting-devices-replace-batteries-in-iot-sensors/#.WvKtApdx202

1st: reduce the power required by your application!

1st: reduce the power required by your application! 100ms Periodic Transmit or Receive @ 100kB/s (8+4+62+2 = 76 bytes)

https://www.digikey.lv/en/articles/techzone/2014/oct/using-energy-harvesting-techniques-with-ultra-low-power-ics-to-meet-the-power-demands-of-wearables

1st: reduce the power required by your application!

2nd: try to optimize the energy conversion, storage and usage!

2nd: try to optimize the energy conversion, storage and usage! Energy is a limited quantity!

All applications generally require DC voltage supply.

AC – DC Converter

Piezoelectric EH

Electromechanical EH

RF EH

DC – DC Converter

Solar EH TEG EH

NiPS –ENABLES Summer School, Perugia 17-20 July 2018

VOLTAGE

DC

AC

Power management AC – DC converter (2): voltage doubler 1000 pF 5V Dĺ Dĺ C15V_P-P 1000 pF 10V D2offset 1 kHz (b) v(2)v(4)(c) (a) v(1)10.0v(2) B 5.0Mainly used for RF EH v(1)0.0 v(4) -5.0https://www.allaboutcircuits.com/textbook/semiconductors/c 2.0 4.0 0.0 6.0 hpt-3/voltage-multipliers/ mStime

NiPS - ENABLES Summer School, Perugia 17-20 July 2018

•••------

Power management AC – DC converter (3): multiplier

http://www.nutsvolts.com/magazine/article/dc-voltage-converter-circuits

AC - DC converter (4): diodes are replaced by MOSFET

Power management AC – DC converter (4): diodes are replaced by MOSFET

NiPS – ENABLES Summer School, Perugia 17-20 July 2018

Linear converters

Pros of Linear Power Supply

- No ripple and low noise
- Low in cost and complexity
- Better response time to line and load transients

Cons of Linear Power Supply

- Low efficiency
- High weight due to larger components
- Low load protection in case of failure

Linear voltage regulators: efficiency

 $P = \Delta V \cdot I \quad [W]$ $\eta = \frac{P_{out}}{P_{in}} = \frac{V_{out} \cdot I_{out}}{V_{in} \cdot I_{in}}$ $\eta = \frac{P_{out}}{P_{in}} = \frac{V_{out} \cdot I_{out}}{V_{in} \cdot I_{in}} = \frac{V_{out}}{V_{in}}$

since for a linear regulator $I_{out} = I_{in}$

Switching converters

Pros of Switching Power Supply

- Higher efficiency
- Low weight and size due to smaller components (conversion performed at high frequency)
- High load protection in case of failure

Cons of Switching Power Supply

- Ripple at switching frequency
- Possible emission of EM noise
- High in cost and complexity compared to linear PS
- Limited bandwidth to 1/10th of switching frequency

Switching converters

Most commonly used switching converter types:

- Buck used to reduce a DC voltage to a lower DC voltage.
- **Boost** provides an output voltage that is higher than the input.
- **Buck-Boost** the output voltage can be lower or higher than the input one.
- Flyback an output voltage that is less than or greater than the input can be generated, as well as
- **Push-Pull** A two-transistor converter that is especially • efficient at low input voltages.
- Half-Bridge A two-transistor converter used in many offline applications.
- **Full-Bridge** A four-transistor converter that can generate the • highest output power of all the types.

http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=snva559&fileType=pdf

Index

- What's IoT Internet of Things?
- Why Energy Harvesting?
- Sources of energy
- Powering issues
- Mechanical design
- An example of integrated system

Mechanical design

Several constraints:

- Volume
- Shape
- Weight
- Color

- Material many standards (RoHS, RAEE, LVD e REACH...)
- Impact resistance EN 62-262 European standard
- Tightness Ingress Protection (IPxy)
- Cost!

http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=snva559&fileType=pdf NiPS -ENABLES Summer School, Perugia 17-20 July 2018

Mechanical design

IK00	Not protected
IK01	Protected against 0.14 joules impact Equivalent to impact of 0.25kg mass dropped from 56mm above impacted surface.
IK02	Protected against 0.2 joules impact Equivalent to impact of 0.25kg mass dropped from 80mm above impacted surface.
IK03	Protected against 0.35 joules impact Equivalent to impact of 0.25kg mass dropped from 140mm above impacted surface.
IK04	Protected against 0.5 joules impact Equivalent to impact of 0.25kg mass dropped from 200mm above impacted surface.
IK05	Protected against 0.7 joules impact Equivalent to impact of 0.25kg mass dropped from 280mm above impacted surface.
IK06	Protected against 1 joule impact Equivalent to impact of 0.25kg mass dropped from 400mm above impacted surface.
IK07	Protected against 2 joules impact Equivalent to impact of 0.5kg mass dropped from 400mm above impacted surface.
IK08	Protected against 5 joules impact Equivalent to impact of 1.7kg mass dropped from 300mm above impacted surface.
IK09	Protected against 10 joules impact Equivalent to impact of 5kg mass dropped from 200mm above impacted surface.
IK10	Protected against 20 joules impact Equivalent to impact of 5kg mass dropped from 400mm above impacted surface.

Mechanical design

Protection Against Solid Bodies Data Table			Protection Against Liquids Data Table			
0	Tests	No Protection	0	Tests	No Protection	
1	Ö ^{Ø 50} mm	Protected against solid bodies larger than 50 mm (eg. accidental contact with the hand)	1	tillit	Protected against vertically-falling drops of water (condensation)	
2	0 12.5 mm	Protected against solid bodies larger than 12.5 mm (eg. finger of the hand)	2	with the	Protected against drops of water falling at up to 15° from the vertical	
3	0 ^{2,5 mm}	Protected against solid bodies larger than 2.5 mm (eg. tools, wires)	3	60	Protected against drops of water failing at up to 60° from the vertical	
4	0 ^{21 mm}	Protected against solid bodies larger than 1 mm (eg. fine tools, small wires)	4		Protected against projections of water from all directions	
5	0	Protected against dust (no harmful deposit)	5	0	Protected against jets of water from all directions	
6	0	Completely protected against dust	6	102	Completely protected against jets of water of similar force to heavy seas	
~		/	7	lo	Protected against the effects of immersion	
	`X	У	в		Protected against effects of prolonged immersion under specific conditions	

http://www.govan.com.au/wp-content/uploads/2013/11/Protection-Against-Solid-Bodies-Liquids-Data-Table_JPG.jpg

Mechanical design Easier with a 3D printer!

http://www.govan.com.au/wp-content/uploads/2013/11/Protection-Against-Solid-Bodies-Liquids-Data-Table_JPG.jpg NiPS – ENABLES Summer School, Perugia 17-20 July 2018

Index

- What's IoT Internet of Things?
- Why Energy Harvesting?
- Sources of energy
- Powering issues
- Mechanical design
- An example of integrated system

HAT2 – Hybrid Autonomous Transceiver V2 Small enclosure: 60 x 35 x 25 mm

- 1 piezoelectric non-linear vibrations energy harvester
- 1 solar array (2 x solar cells Pmax = 8 mW @ 3,9 V, Solar Simulator 50k LUX)
- 1 LDO voltage regulator: Vout = 3,3 Vdc, Iq = 3,2 μ A
- \bullet 1 high capacitance tantalum capacitor: 1000 μF 6,3 V
- 1 NanoPower supervisory circuitry

F. Orfei, R. Mincigrucci, I. Neri, F. Travasso, H. Vocca and L. Gammaitoni, "Hybrid autonomous transceivers," Education and Research Conference (EDERC), 2012 5th European DSP, Amsterdam, 2012, pp. 173-177. doi: 10.1109/EDERC.2012.6532249 http://ieeexplore.ieee.org/document/6532249/

F. Cottone, H. Vocca, L. Gammaitoni, "Nonlinear Energy Harvesting" Phys. Rev. Lett. 102, 080601 (2009)

HAT2 prototype

NiPS – ENABLES Summer School, Perugia 17-20 July 2018

Test on the shaker

Real vibrations can be used to evaluate the time required to charge the storage capacitor.

Charging a 1000 µf capacitor with a linear and

a non-linear piezoelectric vibration energy harvester up to 3.3 v

$$Q = \frac{1}{2}CV^2$$

AC – DC + linear voltage regulator

AC – DC + linear voltage regulator

NiPS -ENABLES Summer School, Perugia 17-20 July 2018

