

Energy storage materials: the conversion-type for lithium rechargeable batteries

Qingsong Wang, Ben Breitung

qingsong.wang@kit.edu

Phone: +49 721-608-28102

Web-site: http://www.int.kit.edu/home.php

July. 2018, NiPS Summer School Perugia, Italy

INSTITUTE OF NANOTECHNOLOGY

KIT

Institute of Nanotechnology

Research areas

Carbon-based Nanostructures

Nanosystems based on sp2-carbon such as fullerenes, carbon nanotubes or graphene are of tremendous scientific and technological interest.

Electrochemical Energy and Hydrogen Storage Renewable energies such as wind and solar power are in need of efficient energy storage systems.

Functional Molecules Because chemistry allows the synthesis of atomically precise copies of a given molecule, it is the ultimate method of "bottom-up" nanofabrication.

Molecular Electronics Our work with magnetic molecules showcases the ability to manipulate quantum degrees of freedom in a transport experiment.

Nanomaterials and Nanocatalysis

Nanomaterials, comprised primarily of surfaces and interfaces, display surprising properties that we can influence through controllable stimuli.

Photonic Nanostructures By combining STED ideas with direct laser writing (DLW), we are able to produce photonic crystals with band gaps at visible frequencies.

Printable Systems: Materials and Methods

Our research is focused on printing electronic devices based on inorganic nanomaterials and the development of novel printing technologies.

Quantum Transport and Correlations

Advances in nanostructuring allow the fabrication of ever smaller and increasingly complex devices which display spectacular quantum effects in transport.

- Introduction of lithium rechargeable batteries
- Reaction mechansims of the electrode materials
 - Intercalation/Insertion
 - Alloying
 - Conversion
- Lithium/Sulfur batteries (Ph.D work)
- High Entropy Oxide materials (highlight)

The evolution of the mobile phone

Institute of Nanotechnology

Electric cars

Cylinder shape cell: 18650, 21700

Institute of Nanotechnology

Electrochemical energy storage is an indispensable technology in our daily life!

- Portable devices
- Electric vehicles
- Stationary devices

https://chargedevs.com/newswire/nissan-gm-and-toyota-repurpose-used-ev-batteries-for-stationary-storage/

Lithium Rechargeable Batteries

https://doi.org/10.1016/j.mattod.2015.10.009

Institute of Nanotechnology

Reaction mechanisms in electrode materials

Chem. Soc. Rev., 2009, 38, 2565-2575

Starting Point: Sony, LiCoO₂, 1991

Li-ion intercalation at both electrodes

Journal of The Electrochemical Society, 164 (1) A6220-A6228 (2017)

Qingsong Wang

Institute of Nanotechnology

LiCoO₂

Initial discharge characteristics of LiCoO2 between the charge cut-off potential of 4.3, 4.4, 4.5, 4.6 V vs Li/Li⁺ and the discharge cut-off potential of 2.75 V vs Li/Li⁺.

Cycle characteristics of LiCoO2 between the charge cut-off potential of 4.3, 4.4, 4.5, 4.6 V vs Li/Li⁺ and the discharge cut-off potential of 2.75 V vs Li/Li⁺.

Higher cut-off voltage, higher capacity, but faster capacity decaying

Journal of The Electrochemical Society, 155 (7) A537-A541 2008

LiNiO₂

Advantages: isostructural, Ni abundant, cheaper alternative

Disadvantages:

critical synthesis condition, Ni³⁺ reduction to Ni²⁺ cation mixing, phase transformation, capacity fading thermally unstable, sensitive to moisture

Phys. Chem. Chem. Phys., 2015, 17, 14064-14070 J. Mater. Chem. A, 2017, 5, 874-901

LiMnO₂

Advantages: cheaper alternative, environmental benign

Disadvantages:

difficult synthesis (undesired orthorhombic) structural rearrangement, fast capacity fading

J. Electrochem. Soc. 1997,144 (10), 3323, 3330

$\mathrm{LiNi}_{0.5}\mathrm{Mn}_{0.5}\mathrm{O}_{2}$

Science 311 (2006) 977–980 Chemistry of Materials 15 (2003) 3161–3169

Journal of Power Sources 184 (2008) 489–493

17

Institute of Nanotechnology

Li[Ni_{1-x-y}Co_xMn_y]O₂ –Layered NCM

Phase diagram of the ternary system

□ Ni²⁺/Ni³⁺/Ni⁴⁺

□ high performances, lower cost, and higher safety

J. Mater. Chem. A, 2016, 4, 16073

Journal of The Electrochemical Society, 164 (1) A6220-A6228 (2017)

Institute of Nanotechnology

Cycle performance and discharge capacity retention at various cutoff voltages

Adv. Energy Mater. 2014, 4, 1300787

HR-TEM images and FFTs after 50 cycles under 3.0-4.5 V conditions

HR-TEM images and FFTs after 50 cycles under 3.0-4.8 V conditions

Rock-salt: NiO (2.42 Å), CoO (2.46 Å), ionically insulator

Degradation mechanisms

Samsung Galaxy Note 7

DEMS-DEIRS: differential electrochemical mass spectrometrydifferential electrochemical infrared spectroscopy

Balázs B. Berkes et.al. Electrochemistry Communications 60 (2015) 64-69

Balázs B. Berkes et.al. Electrochemistry Communications 60 (2015) 64-69

➢ Initial charging process, fast gassing evolution →SEI

High cut-off voltage

Amount of individual gases (here C₂H₄, H₂, CO, and CO₂) along with their sum

Balázs B. Berkes et.al. J. Solid State Electrochem (2016) 20: 2961-2967

Pressure measurement. The test cell contained a Li reference electrode. The potentials of cathode (*red line*) and anode (*black line*) are shown versus Li along with the terminal voltage of the battery (*blue line*).

Balázs B. Berkes et.al. J. Solid State Electrochem (2016) 20: 2961-2967

Possible reaction routes in the reduction of Ethylene Carbonate

Balázs B. Berkes et.al. J. Solid State Electrochem (2016) 20: 2961-2967

Alloying: Si anode

- Gravimetric capacity
- (4200 mAh g⁻¹, Li₂₂Si₅)
 ➢ Volumetric capacity
 - (9786 mAh cm⁻³)

- The second most abundant element
- Cost effective
- Environmentally benign
- A low electrochemical potential (0.37-

0.45 V vs. Li/Li+

J. Mater. Chem., 2007, 17, 3759-3772 Nano-Micro Lett. (2014) 6(4):347–358

Electrochemical and Solid-State Letters, 7 (10) A306-A309 (2004)

Challenges

Nano Energy 31 (2017) 113–143

32

Institute of Nanotechnology

Strategies

- Nanostructures
- **D** porous structures
- unusual design
- **D** Composites
- □ SEI formation
- □ binders

Yolk-Shell Design

Nano Lett. 2012, 12, 3315-3321

Institute of Nanotechnology

In situ TEM study

✓ no fracture ✓ Close contact Si core/C shell ✓ enough void space to accommodate expansion

Pomegranate Design

Nature Nanotechnology vol 9, p187–192 (2014)

Method

bottom-up microemulsion

- 1. Synthesis of Si@SiO2 nanoparticles
- 2. Microemulsion-based assembly of Si@SiO2 nanoparticles into clusters
- 3. Carbon coating on Clusters
- 4. Silica layer etching

In situ TEM study

Ultra-stable electrochemical performance

Conversion

conversion reaction

 $M_a X_b + (b \cdot n) Li \leftrightarrow aM + bLi_n X$

M = transition metal X = anion n = formal oxidation state of X

	X = O		X = S		X = N		X = P		X = F	
	Phase	Econv [V] [a]	Phase	Econv [V]	Phase	Econv [V]	Phase	Econv [V]	Phase	Econv [V]
M = Ti									TiF ₃	0.95 [258]
M = V									VF ₃	0.4 [258]
M = Cr	Cr ₂ O ₃	0.2 [33]	CrS	0.85 [192]	CrN	0.2 [225]			CrF ₃	1.8[c] [259]
M = Mn	MnO ₂	0.4 [38]	MnS	0.7 [165]			MnP ₄	0.2[d] [231]		
	Mn ₂ O ₃	0.3 [42]								
	MnO	0.2 [46]								
M = Fe	Fe ₂ O ₃	0.8 [304]	FeS ₂	1.5 [173]			FeP ₂	0.3 [241]	FeF ₃	2.0 [c] [260]
	Fe ₃ O ₄	0.8 [67]	FeS	1.3 [178]	Fe ₃ N	0.7 [224]	FeP	0.1 [241]		
	FeO	0.75 [13]								
M = Co	Co ₃ O ₄	1.1 [87]	CoS ₂	1.65–1.3 [b] [187]	CoN	0.8 [221]	CoP ₃	0.3 [244]	CoF2	2.2 [c] [261]
	CoO	0.8 [87]	Co _{0.92} S	1.4 [192]	Co ₃ N	1.0 [224]				
			Co ₉ S ₈	1.1 <mark>[189]</mark>						
M = Ni	NiO	0.6 [13]	NiS ₂	1.6 [194]	Ni ₃ N	0.6 [223]	NiP ₃	0.7 [250]	NiF2	1.9 [c] [261]
			NiS	1.5 [196]			NiP ₂	0.5-0.3 [b] [233]		
			Ni ₃ S ₂	1.4 [199]			Ni ₃ P	Slope [249]		
M = Cu	CuO	1.4 [125]	CuS	2.0-1.7 [b] [209]	Cu ₃ N	[229]	CuP ₂	0.7 [251]	CuF2	3.0 [c] [270]
	Cu ₂ O	1.4 [129]	Cu ₂ S	1.7 [208]			Cu ₃ P	0.8 [252]		
M = Mo	MoO ₃	0.45 [148]	MoS ₂	0.6 [214]						
	MoO ₂	Slope [151]								
M = W			WS ₂	0.8-0.6 [b] [218]						
M = Ru	RuO ₂	0.9 [155]								

Adv. Mater. 2010, 22, E170–E192

Challenges

conversion reaction M = transition metalX = anion $M_aX_b + (b \cdot n) Li \leftrightarrow aM + bLi_nX$ n = formal oxidation state of X Conversion 30-50 Å 30-50 Å M Charge Discharge MX $Li_2X + M$ MX

- Completely change
- Volume change
- Large initial irreversible capacity loss

Energy Environ. Sci., 2011, 4, 3243-3262

41

Conversion mechanism of CuO nanowires during lithiation–delithiation by *in situ* transmission electron microscopy

Schematic illustration and corresponding TEM image of a nano-LIB device constructed inside TEM

1st lithiation process

1st delithiation process

Strategies

 $2Li + S \rightarrow Li_2S$

Theoretical capacity: 1675 mA h/g @ 2V

ARTICLES PUBLISHED ONLINE: 17 MAY 2009 | DOI: 10.1038/NMAT2460 nature materials

Properties for different cathode materials for Li-ion and Li-S batteries.	
---	--

Cathode material	Theoretical gravimetric capacity (mAh/g)	Experimental capacity (mAh/g)	Theoretical volumetric capacity (mAh/cm ³)	Average voltage (V)	Level of development
LiCoO ₂	274	130–150	1363	3.8	Commercialized
LiNi _{0.33} Co _{0.33} Mn _{0.33} O ₂	280	150-170	1333	3.7	Commercialized
$LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$	279	180-200	1284	3.7	Commercialized
LiMn ₂ O ₄	148	100-120	596	4.1	Commercialized
Li ₂ MnO ₃	458	180–190	1708	3.8	Research
LiFePO ₄	170	160-165	589	3.4	Commercialized
LiCoPO ₄	167	110-130	510	3.24	Research
Sulfur	1675	200-1400	2567	2.1	Research

Li-S Batteries: The Challenges, Chemistry, Materials, And Future Perspectives A Manthiram, Y Fu, SH Chung, C Zu, YS Su Chem. Rev., 2014, 114 (23), 11751 X Ji, KT Lee, LF Nazar *Nature materials, 2009, 8 (6), 500*

The Li-S Battery and the Redox Shuttle

Nat. Mater. 2012, 11, 19.

- Inner short circuit
- Cathode active material loss
- Metal anode passivation

Shuttle Free Li-S battery

Liquid electrolyte Li–S cells

Qingsong Wang

Hybrid electrolyte Li–S cells

Interface Engineering

Carbon coated LAGP

Carbon were and and were and a second second

- The carbon-coating serves as an upper current collector to facilitate electron transport for high activematerial utilization.
- The carbon coating layer on the LAGP ceramic helps to enhance the wettability toward electrolytes.
- Enhanced electrochemical performance is demonstrated

Q. Wang et al. Solid State Ionics 300 (2017) 67-72

Pristine LAGP

Interface Engineering

Advantages of GPE

- Has acceptably high roomtemperature conductivity and reasonable mechanical flexibility
- ✓ Helps to decrease the contact resistance of the interface

Gel Polymer Electrolyte (GPE)-PEO based

Q. Wang et al. Chem. Commun., 2016, 52, 1637-1640

Interface Engineering

High Entropy Oxides

What are high entropy oxides (HEOs)?

- Adding multiple cations (≥5) on a particular Wyckoff site:
- Achieve a single phase

 $NiO \rightarrow (Co_{0.2}Cu_{0.2}Mg_{0.2}Ni_{0.2}Zn_{0.2})O$

Fm3m

Why are these called high entropy oxides?

$$\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$$

$$\Delta S = \Delta S_T + \Delta S_{config}$$

 $\Delta S_{config} = -R \sum_{i=1}^{n} x_i \ln x_i$

Maximum; all elements in equiatomic amounts R: ideal gas constant

In high entropy materials (high entropy alloys, etc.)

 $\Delta S_{config} > 1.5R$ $T\Delta S_{mix} > \Delta H_{mix}$

Rost C. M. et al., Nat. Commun. 6, 8485 (2015)

Murty B. S. et al., High Entropy Alloys (2014)

Rost C. M. et al., Nat. Commun. (2015)

A. Sarkar, et al., J. Eur. Cer. Soc. (2017)

Synthesis

A. Sarkar, et al., J. Eur. Cer. Soc. (2017)

High Entropy Oxides for Reversible Energy Storage

Half cell- charged against Li (as counter electrode)

- Specific capacity > 600 mAh/g (in spite of the big particles)
- High reversibility
- Rate capability

A. Sarkar, et al., Nat. Comm. accepted.

- MEOs needed additional calcination step
- All systems calcined at 1000 °C for comparison

Murty B. S. et al., High Entropy Alloys (2014)

90

80

HEO Vs MEO (as electrode)

HEO Vs MEO (as electrode)

- HEO better stability
- HEO better Coulombic efficiency

Possible effect of entropy on the electrochemical behaviour

After cycling

Operando XRD

2D collimating multilayer optic \rightarrow Parallel beam, divergence <0.3 mrad, ~10⁸ Ph/s

Potentiostat

Debye-Scherrer transmission geometry

Original author: Lea de Biasi

Institute of Nanotechnology

Operando XRD and ex situ TEM studies

- The HEO structure is maintained even while during discharge
- No segregation of elements during cycling
- Signature of Li₂O after first discharge

Proposed mechanism

Typical Conversion??

 $Li + (Co_{0.2}Cu_{0.2}Mg_{0.2}Ni_{0.2}Zn_{0.2})O \longrightarrow Co + Cu + Mg + Ni + Zn + Li_2O$

- Can't explain the rocksalt phase during discharge
- Possibly some elements keep the HEO structure intact during discharging
- Rest are participating in lithiation and delithiation the process

 $Li + (Co_{0.2}Cu_{0.2}Mg_{0.2}Ni_{0.2}Zn_{0.2})O \longrightarrow HEO + Co + Cu + Zn + Li_2O$

- Reaction mechansims of the electrode materials
 - > Intercalation/Insertion (Li[Ni_{1-x-y}Co_xMn_y]O₂)
 - > Alloying (Si, volume change, yolk-shell)
 - Conversion (CuO, reaction mechanism)
- ✓ Lithium/Sulfur batteries (shuttle effect)
- High Entropy Oxide materials (entropy matters)

Thanks very much for your attention!

