Software and
energy aware computing

(Part 1)

Kerstin Eder

Design Automation and Verification, Microelectronics
Verification and Validation for Safety in Robots, Bristol Robotics Laboratory

-% Unlver51t of Department of The Royal Acaderny M O S®
- BRISTOL COMPUTER SCIENCE of Engineering l

Dynamic Energy Monitoring
for desktop applications

'1

B WY ’ el m———

The EACOF

A simple Energy-Aware
COmputing Framework
https://github.com/eacof

Flo 7 et

High Level

Provider

Energy
Data From

Hardware
or OS

Central Authority

Consumer

Application

Providers

Provider Central Authority Consumer

CPU Provider —_———)

Battery
Provider

—— — Application

HDD Provider sl il =

Consumers

Provider

CPU Provider

Battery

Provider

HDD Provider

Central Authority

-—=>

-—=>

Consumer

Email Client

Video Player

Web Browser

One Machine

Provider Central Authority Consumer

CPU Provider ———) —_—— Email Client

Battery

S rerilolaif —— Video Player

HDD Provider —_——) —_—— Web Browser

Networked

= e e e = = =

CPU Provider —_— —_——

Battery Provider —— Video Player

HDD Provider ——

Web Browser

e e g = e e e e e e =

~
~
~
~
~

[N S

A CN
”

”
”
”
”
”

- = = = = e M e = = = == ==

|
|
|
|
|
|
|
|
L

CPU Provider — - »

Battery Provider —— Video Player

HDD Provider

Web Browser

Network

Analytics

CPU Provider — —
Battery Provider — —
HDD Provider —)

Video Player

Web Browser

,._________
|
I

-
-
’/
-
-

~
~
~
~
~
~

— e e e e e e = = g e e e e = =

e

CPU Provider — —

Battery Provider — —

HDD Provider —_— = —— Web Browser

— — Video Player

b o o o o e e e o e e e e e e e e mm e mm mm mm mm mm Em Em E

How to use EACOF

Simple Provider Example

while(1l) {
collectEnergyData();
waitABit();

}

Simple Provider Example + EACOF

#include <eacof.h>
eacof Probe *probe;
eacof Sample sample;
initEACOF();
createProbe(&probe, 1, EACOF_DEVICE_BATTERY_ALL);
while(1l) {
sample = collectEnergyData();
addSample(probe, sample);
waitABit();

}
deleteProbe(&probe);

Simple Consumer Example

for (int i = 0; i < 10000; i++) {
printf(“Hello EACOF!");
}

Simple Consumer Example + EACOF

#include <eacof.h>

eacof Checkpoint *checkpoint;
eacof Sample sample;
initEACOF();

setCheckpoint(&checkpoint, EACOF_PSPEC_ALL, 1,
EACOF_DEVICE _BATTERY_ALL);

for (int i = 0; i < 10000; i++) {
printf(“Hello EACOF!\n");
sampleCheckpoint(checkpoint, &sample);

}
deleteCheckpoint(&checkpoint);

The EACOF API

#include <eacof.h>
1nitEACOF ();

createProbe(); deleteProbe();
activateProbe(); deactivateProbe();

addSample();

setCheckpoint(); deleteCheckpoint();
sampleCheckpoint();

Comparing Sorting Algorithms

= Sorting of integers in [0,255]

Data Type
uint8_t uint16_t uint32_t uint64_t

Total Total Average || Total Total Average || Total | Total | Average || Total Total Average

Time | Energy Power Time | Energy Power Time | Energy | Power Time | Energy Power

Algorithm Num Elements (s) (J) (W) (s) (J) (W) (s) (J) (W) (s) (J) (W)

Bubble Sort 50,000 5.53 66.66 12.03 5.39 65.29 12.09 5.66 69.05 12.19 5.78 71.83 12.41
Insertion Sort 200,000 7.98 | W102.18 12.75 7.98 | WM103.00 12.85 7.46 | H98.81 13.21 7.54 | W105.03 13.89
Quicksort 2,000,000 5.51 61.73 11.20 5.53 61.90 11.19 5.52 61.60 11.15 5.51 62.90 | H11.42
Merge Sort 60,000,000 || 6.06 ©72.33 11.93 6.07 72.46 11.93 6.12 75.65 12.36 || 5.93 ©76.98 | K12.98
gsort 100,000,000 || *5.84 ©72.39 12.37 6.15 76.90 12.48 6.79 86.29 12.69 || 5.69 73.25 12.86
Counting Sort 200,000,000 0.23 42.92 12.75 0.24 43.16 13.23 0.25 43.58 14.15 0.35 $5.12 14.44

" |nsertion Sort: 32 bit version more optimized
¢ Counting Sort:

% Average power variations between algorithms

H. Field, G. Anderson and K. Eder. “EACOF: A Framework for Providing Energy Transparency to enable Energy-Aware

75% more energy for 64 bit compared to 8 bit values
® Sorting 64 bit values takes less time than sorting 8 bit values,
but consumed more energy

Software Development”. 29th ACM Symposium On Applied Computing. pp. 1194-1199. March 2014, ACM.

15

Invitation: EACOF is open source!

File Edit View Higtory Bookmarks Tools Help
| © eacof/eacof - Gittub [+

& 9 & |ill) @ GitHub, Inc. (US) | https:/github.com/eacof/eacof
o] [8) Most Visited

Getting Started (3 Latest Headlines

GitHub s repository ~ searcn ortype a commans) Explore Features Enterprise Blog Sign in

eacof / eacof * Star 4 P Fork 0

The Energy Aware COmputing Framework

<> Code E
1 t 1 branch e 1c ut
@ Issues 0
1 branch master ~ eacof / @ i1 Pull Requests 0
Release commit
4~ Pulse
Hayden Field a ed 13 hours ag

© cadeszaeso B

M codegen

13 hou fus Graphs
e Bl b Network
B examples
HTTPS
B headers 13 hou
e B You can clone with HTTT
B LICENSE Subver

13 hours

B Makefile 13 hou [@ Clone in Desktop

B doxygen.conf

e commit

13 hours ago <> Download ZIP

B readme.md

8 e commit

13 hours ago

readme.md

EACOF

EACOF, the Energy Aware COmputing Framework, is a modular framework which provides a layer of
abstraction between sources of energy data and the applications that exploit them, allowing developers to profile
their code for energy consumption in a simple and portable manner.

qgithub.com/eacof

Learning Objectives

v"Why software is key to energy efficient computing

v"What energy transparency means and why we
need energy transparency to achieve energy
efficient computing

v"How to measure the energy consumed by
software

= How to estimate the energy consumed by
software without measuring

= How to construct energy consumption models

Learning Objectives

v"Why software is key to energy efficient computing

v"What energy transparency means and why we
need energy transparency to achieve energy
efficient computing

v"How to measure the energy consumed by
software

= How to estimate the energy consumed by
software without measuring

= How to construct energy consumption models

Static Analysis of
Energy Consumption

ENTRA

Whole-Systems
Energy Transparency

iidea =g === "~ iMdea
sSortware

- “ SU“ware
S L
4 T

OO Other Prulects

i

(=S

The ENTRA Project ¥

= Whole Systems ENergy TRAnsparency

EC FP7 FET MINECC:

‘Software models and programming methodologies
supporting the strive for the energetic limit

(e.g. energy cost awareness or exploiting the trade-off
between energy and performance/precision).”

- Bl 1 dea 3 NMOS

Acknowledgements

The partners in the EU ENTRA project

XMOS

Elic University of
BRISTOL

John Gallagher and team

Pedro Lépez Garcia and team

Henk Muller and team

Steve Kerrison, Kyriakos Gerogiou, James
Pallister, Jeremy Morse and Neville Grech

Static Energy Usage Analysis

Original Program: Extracted Cost Relations:
int fact (int x) { Ceact (X) = C, + Cy if x<=0
if (x<=0)2 Cgact (X) = C, + CL(X) if x>0
return 1P°; C. (X) = Cq + Cgpor (x-1)

return (x *9 fact(x-1))¢;

= Substitute C_, C,, C4 with
the actual energy required to execute the
corresponding lower-level (machine) instructions.

Energy Modelling
captures energy consumption

Modelling Considerations

= At what level should we model?
— Instruction level, i.e. machine code
— intermediate representation of compiler
— source code

= Models require measurements
— need to associate entities at a given level with
costs, I.e. energy consumption

e accuracy
e usefulness

Modelling Considerations

= At what level should we model?
— Instruction level, i.e. machine code
— intermediate representation of compiler
— source code

= Models require measurements

— need to associate entities at a given level with
costs, I.e. energy consumption

» accuracy — the lower the better ?
 usefulness — the higher the better ®

—

ISA-Level Energy Modelling

Energy Cost (E) of a program (P):

Ep =Y (Bix N;)+» (0;; x Ni;)

i (]

Instruction Circuit State

Base Cost, Overhead

B;, of each O, ;, for each

Instruction iné]truction
pair

Based on V. Tiwari, S. Malik and A. Wolfe. “Instruction Level Power Analysis and Optimization of
Software”, Journal of VLSI Signal Processing Systems, 13, pp 223-238, 1996.

27

ISA-Level Energy Modelling

Components of an Energy Model:

Ep ZBXN +Z i X NiJ)

" B;and O, ; are energy costs.

= Characterization of a model through

measurement produces these values
for a given processor.

Based on V. Tiwari, S. Malik and A. Wolfe. “Instruction Level Power Analysis and Optimization of
Software”, Journal of VLSI Signal Processing Systems, 13, pp 223-238, 1996.

28

ISA-Level Energy Modelling

Components of an Energy Model:

Ep =Y (B; x Ni)+ Y (0;; x Ny ;)

i i,

= N is the number of times that
instruction i is executed, and

" N,;is the number of times that the
execution of instruction i is followed by
the execution of instruction ;.

Based on V. Tiwari, S. Malik and A. Wolfe. “Instruction Level Power Analysis and Optimization of
Software”, Journal of VLSI Signal Processing Systems, 13, pp 223-238, 1996.

29

Exercise: E(fact (3))?

int fact (int x) {
int ret = x;
while (--X)

{

ret *= x;

}

return ret;

How much energy
does a call to

fact(3) consume?

fact:

L3

L2

sub
cmp
beq

mul
sub
cmp
bne

bx

r3,
r3,
L2

ro0,
r3,
r3,
.L3

1r

ro,

7#0

r3
r3,

7#0

#1

#1

Base Cost Characterization

Instruction | Base Cost

[pJ]
sub 600
cmp 300
beq 500
mul 900
bne 500
bx 700

fact:
sub
cmp
beq
.L3:
mul
sub
cmp
bne
L2:
bx

r3,
r3,
L2

r0,
r3,
r3,
.L3

1r

r0, #1
#0

r3
r3, #1
#0

Overhead Characterization

fact:

.L3:

L2

sub
cmp
beq

mul
sub
cmp
bne

bx

r3,
r3,
L2

ro,
r3,
r3,
L3

1r

ro, #1
#0

r3
r3, #1
#0

O;; | beq | bne | bx | cmp | mul sub
[pJ]
beq 0 10 10 30 30 30
bne | 10 0 10 30 30 30
bx 10 10 0 60 60 60
cmp | 10 10 10 0 20 20
mul 10 10 10 30 0 30
sub 10 10 10 20 30 0

Instruction Characterization

Instruction | Base Cost O;; | beq | bne | bx | cmp | mul sub
[pJ] [pJ]

beq 500 beq 0 10 10 30 30 30
bne 500 bne | 10 0 10 30 30 30

bx 700 bx 10 10 0 60 60 60
cmp 300 cmp 10 10 10 0 20 20
mul 900 mul 10 10 10 30 0 30
sub 600 sub | 10 10 10 20 30 0

ISA-Level Energy Modelling

Components of an Energy Model:

Ep = Z(B,z; X N;) + Z(Oi.j X Ni ;)

t t,]
Instruction Base Cost O;; beq bne bx cmp mul sub
[pJ] [pJ]
beq 500 beq 0 10 10 30 30 30
bne 500 bne 10 0 10 30 30 30
bx 700 bx 10 10 0 60 60 60
cmp 300 cmp 10 10 10 0 20 20
mul 900 mul 10 10 10 30 0 30
sub 600 sub 10 10 10 20 30 0

Based on V. Tiwari, S. Malik and A. Wolfe. “Instruction Level Power Analysis and Optimization of
Software”, Journal of VLSI Signal Processing Systems, 13, pp 223-238, 1996.

ISA-Level Energy Modelling

Components of an Energy Model:

Ep =Y (B; x Ni)+ Y (0;; x Ny ;)

i i,

= N;and N,; represent the number of
times specific instructions and
iInstruction pairs are executed.

= How can we determine these?

V. Tiwari, S. Malik and A. Wolfe. “Instruction Level Power Analysis and Optimization of Software”,

Journal of VLSI Signal Processing Systems, 13, pp 223-238, 1996.

35

Exercise

@ Argument is in ro0

fact:

sub r3, r0, #1

cmp r3, #0

beq L2 @ Never iterate loop if num ==
.L3:

mul r0, r3 @ Accumulate factorial value in r0

sub r3, r3, #1 @ r3 is decrementing counter

cmp r3, #0

bne L3 @ Loop if we haven't reached 0
L2:

bx 1r @ Return, answer is in r0

Which instruction sequence is being executed for a call to
fact(3)?

Exercise

@ Argument is in ro0

fact:

sub r3, r0, #1

cmp r3, #0

beq L2 @ Never iterate loop if num == 1
.L3:

mul r0, r3 @ Accumulate factorial value in r0

sub r3, r3, #1 @ r3 is decrementing counter

cmp r3, #0

bne L3 @ Loop if we haven't reached 0
L2:

bx 1r @ Return, answer is in r0

A call to fact (3) would invoke the following instructions in this order:
* sub, cmp, beqg (not taken),
* mul, sub, cmp, bne (taken),

* mul, sub, cmp, bne (not taken),
* bx

Exercise

Instruction | Base Cost O,; | beq [bne | bx | cmp | mul sub
[pJ] [pJ]

beq 500 beq 0 10 10 30 30 30
bne 500 bne | 10 0 10 30 30 30

bx 700 bx 10 10 0 60 60 60
cmp 300 cmp 10 10 10 0 20 20
mul 900 mul 10 10 10 30 0 30
sub 600 sub | 10 10 10 20 30 0

A call to fact (3) would invoke the following instructions in this order:

* sub, cmp, beqg (not taken),
* mul, sub, cmp, bne (taken),
* mul, sub, cmp,

* bx

bne (not taken),

Exercise

Ep = Z(Bl X Nz) + Z(OIJ X NZJ)

sub, cmp, beq (not taken), mul, sub, cmp, bne (taken),
mul, sub, cmp, bne (not taken), bx

Efact(S) =

Exercise

Ep =Y (Bi x Ni)+ Y (0;; x Ny ;)

i i,

sub, cmp, beq (not taken), mul, sub, cmp, bne (taken),
mul, sub, cmp, bne (not taken), bx

E i3 = 37600pJ + 3*300pJ + 500pJ +2*900 + 2*500pJ + 700pJ
+ 3*20pJ + 10pJ + 30pJ + 2*30pJ + 2*10pJ + 30pJ + 10pJ

= 6920pJ = 6.92n]

Is it really this easy?

Energy Cost (E) of a program (P):

Ep =Y (Bix N;)+ Y (0 x N;)

i (]

Instruction Circuit State

Base Cost, Overhead

B;, of each O, ;, for each

Instruction iné]truction
pair

Based on V. Tiwari, S. Malik and A. Wolfe. “Instruction Level Power Analysis and Optimization of
Software”, Journal of VLSI Signal Processing Systems, 13, pp 223-238, 1996.

41

Is it really this easy?

Energy Cost (E) of a program (P):

Ep = Z(Bz X N;) + Z(Oi.j X N; ;) + Z Ey
k

Instruction Circuit State Other
Base Cost, Overhead. Instruction
B;, of each 0. .. for each Effects
instruction i i Shruction

pair

V. Tiwari, S. Malik and A. Wolfe. “Instruction Level Power Analysis and Optimization of Software”,

Journal of VLSI Signal Processing Systems, 13, pp 223-238, 1996. 42

Energy Modelling

Energy Cost (E) of a program (P):

Ep — Z(Bz X N,) + Z(Oz] X N,J) -+ Z E/{,
k

P i]

Instruction Circuit State Other

Base Cost, Overhead, Instruction

B;, of each O. . for each Effects

instruction i S ction (stalls,

pair cache

misses,
etc)

V. Tiwari, S. Malik and A. Wolfe. “Instruction Level Power Analysis and Optimization of Software”,

Journal of VLSI Signal Processing Systems, 13, pp 223-238, 1996. 43

XCore Energy Modelling

Energy Cost (E) of a multi-threaded program (P):

Ny
Ep — PbaseNidleTclk =+ S: S: ((MthO =+ Pbase) Nz’,tTclk)

t=1 icISA
ldle base Concurrency cost, instruction
power and cost, generalised overhead,

el e base power and duration

= Use of execution statistics rather than execution trace.
= Fast running model with an average error margin of less than 7%.

S. Kerrison and K. Eder. 2015. “Energy Modeling of Software for a Hardware Multithreaded Embedded
Microprocessor”. ACM Trans. Embed. Comput. Syst. 14, 3, Article 56 (April 2015), 25 pages.
DOI=10.1145/2700104 http://doi.acm.org/10.1145/2700104 44

The set up...

Power -
Shunt resistor
supply _F Core supply I
INA219 Master processor Slave processor (DUT)

— v
Power samples INA.219 XMProfile
driver 1 control = Test run
software eady / ‘ kernels

start /

stop
Test info &
power data

HIg
©

S. Kerrison and K. Eder. 2015. “Energy Modeling of Software for a Hardware Multithreaded Embedded
Microprocessor”. ACM Trans. Embed. Comput. Syst. 14, 3, Article 56 (April 2015), 25 pages.
DOI=10.1145/2700104 http://doi.acm.org/10.1145/2700104

Characterization

ALU instructions - 32-bit data

1lmul
ladd
lsub
maccu
maccs
crc8
Xor
crc32
ashr
ashr
add
sub
or
and
shr
shl
shr
sub
add
shl
1ss
1lsu

eq

byterev
bitrev
not
neg
mkmsk
clz
mkmsk
zext
sext
andnot
sext
zext

192

184

176

Power (mW)

—
ot
[\

144

136

128

120

3r
3r
3r
3r
3r
3r
3r
3r
3r

shl 2rus
add 2rus

sub 2rus
15r
lér

Even threads instruction (name & encoding)
rus
rus
2r
2r
2r
rus
12r
2r
2r
2r
12r
12r
eq 2rus
2rus
13r
13r
13r
l4r
l4r
l4r
15r

zext
sext
andnot
sext
zext
neg
not
bitrev
eq
1lsu
1ss
shr
shl
shr
and
or
sub
add
ashr l1l2rus
ashr
crc32

mkmsk

clz
mkmsk
xor
crc8
maccs
maccu
lsub
ladd
Imul

byterev

Odd threads instruction (name & encoding) 46

|ISA Characterization

Even threads instruction (name & encoding)

ALU instructions - 32-bit data

Power (mW)

144

136

zext
sext
andnot
sext
zext

128

120

rus
rus

2r

2r

2r
rus
12r

2r

2r

2r
12r
12r
13r
13r
13r
l4r
l4r
l4r
15r
15r
lé6r

clz
mkmsk
neg
not
bitrev
shr
shl
shr
and
or
sub
add
ashr 1l2rus
xor
crc8
maccs
maccu
1mul

zext
sext
andnot
sext
zext
mkmsk
ashr
crc32
1lsub

ladd

Odd threads instruction (name & encoding) Odd threads instruction (name & encoding)

S. Kerrison and K. Eder. 2015. “Energy Modeling of Software for a Hardware Multithreaded Embedded
Microprocessor”. ACM Trans. Embed. Comput. Syst. 14, 3, Article 56 (April 2015), 25 pages.
DOI=10.1145/2700104 http://doi.acm.org/10.1145/2700104 47

256

. =KX r ¥ 0.0207
i ! B AR b L E o
£ = - L T H - - g L
= = - . -
240 b T ¥ - A 0 e R S >
{1 O _ = = N T : 1
Al B Tl % K] K . Er] bk =
. T - = [k i s 0.0204
D 2 Sl ST < i)
ITLEER T 5 . 1 = A A B R S =

s |
i
~
o
=t
Ty
L
i

AN L L 5 :
DI TR o R - - (R
ARBCE B .L,P' = SRS e Bn e — et = - i i M T B 0.0201
«f o " B * X ¥ k e X -
3 ¥ W P] T .) B
[ERER h ot I] 3 f T i 1
176 BEME L T Wb TR ST s EF o

40.0198

|
Te
L

1|

el Tt ol

I
i

=

k2 EE
T " 1 Nl
144 5 . -
119 ah Bt
Pa 10.0195
T . O X5
s X - a7
. i 5 % H b L)
AP = Cy B L
A" ! o s L
112 . x Tel
0 EF : e B 0.0192
e e - Ful®] R
96 - 4 . rL | t‘
T hi i e Pl el O = |
T b d* o 'Y o | '
= ot Wl T D " o
= i B St
80 ;_ T o r- e 1§~ Fi ' =1 0.0189
v ™ h
- = -y - . ‘l o
o - I ¥ - g LRkl
e s P WHEEE i i
=] G ER 0 o] Lt o
h =1 = T ., SREEE =t o
' o) X i | |]
0.0186
48 ' ’ . - H s I =l o el] falat=
F o - el =T T 4
¥ 1 ! - el =k = "4 = ir. 3 =
- 'y 1 - s 2 _r = i
r d = . = = .] . A% ~ i
e - e 3 1 |
I = - : "rJ 0.0183
16 + - ='ﬁl- SF | R 1
L A z
E i =]
0

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 2

1%

6

Energy(a*b) # Energy(b*a)

0.0207

0.0204

0.0201

40.0198

10.0195

0.0192

0.0189

0.0186

0.0183

256

240

T T LT FT T T T T T
18 e | il 1
T R i W0
b - n = G LE r "M
IR i I, F
| L 1
: 1 2 i 1
= - 5 " |
e] BRRESIEONEE 1 R
= okt Ko b T e ¥ 3 ;
C L i iy r >
s ,u:u m '
L :* ; W # a ™[| [}
e R E . i ; X
G = = I T L' L b]
i = =4 o L g
Al - Cnd 1 - -l I-\ .
- 1k r A B] H
7 g = e T - 1
f s RN bl B i b 5
= o = (| 1 - B 1 -
LE N =[5 5 DELE = To § w[s T TF
d i
Ll i : i
% DK o . P
4 : o
 Jee [a3l - b
v ok o [J
o i C 3
i [ol o o i HA .
o] L e M gites [o] Ll g | N
S = 1 N ke
= SN oRd AN gl 5
1 ! " fu wln s [l NENE =0
= ' | I-H " - Gl F: '
| = Th .o S| [b 1 o o
O alEilz o S i = b o =
ik e ISR R 1 RPN HEE
T oy T = x 1= 3
&ﬂ. & of Blar Lt ¥ 5 bal 45 A a
L L =l] el | M
Wz - B = Jll 1] 4=t
AN I ' \— " l- .] H"
i of ¥ u 1 e IP L= e
e | , =l il k- alwlal e
gl s el e el A]
=l P - el L [T !
nu” ' l- .. " T
e b o L 4 T Il ¥ L P .
el - ; - 7l . = [Tl e .
] = R ' s S I fo i i o T
: BEANH - & S
. Iy M = i f = 4
= LIl R o e e el s A T T 3
s g |od i . F .
F el = | 2 P T
" | o 1]] e 3 o] T
¥ m.. s = " | .l.l‘ B
i - i — -
£ g {1 g 8§ & 8 3 0
o~ o~ o~ o~ - - =] —

96 112 128 144 160 176 192 208 224

80

32

16

Characterization

ALU instructions - 32-bit data

1lmul
ladd
lsub
maccu
maccs
crc8
Xor
crc32
ashr
ashr
add
sub
or
and
shr
shl
shr
sub
add
shl
1ss
1lsu

eq

byterev
bitrev
not
neg
mkmsk
clz
mkmsk
zext
sext
andnot
sext
zext

192

184

176

Power (mW)

—
ot
[\

144

136

128

120

3r
3r
3r
3r
3r
3r
3r
3r
3r

shl 2rus
add 2rus

sub 2rus
15r
lér

Even threads instruction (name & encoding)
rus
rus
2r
2r
2r
rus
12r
2r
2r
2r
12r
12r
eq 2rus
2rus
13r
13r
13r
l4r
l4r
l4r
15r

zext
sext
andnot
sext
zext
neg
not
bitrev
eq
1lsu
1ss
shr
shl
shr
and
or
sub
add
ashr l1l2rus
ashr
crc32

mkmsk

clz
mkmsk
xor
crc8
maccs
maccu
lsub
ladd
Imul

byterev

Odd threads instruction (name & encoding) 50

The Impact of Data on Energy Consumption

Power for different data, in mW of dynamic power
Instruction: xcore/sub

256

240

224

208

192

176

175

160

Operand 1

32

16

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
Operand 2

W/A/B-Case Energy Consumption

Operand 1

Operand 1

Instruction:

Power for different data, in mW of dynamic power
Instruction: xcol

Operand 2

xcore/shl

re/sub

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

16

b,

)

=

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Operand 2

120

105

920

75

45

30

15

0

42

36

30

24

Operand 1

Operand 1

256

o h 4 ik i TR N T i ¥
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

256
240
224

208

80

48
32
16

0
0

Power for different data, in mW of dynamic power

Instruction: xcore/add

Power for different data, in mW of dynamic power

: xcore/and

LR 3 R
L .. : -l
ful
LRl B
b B

16 32 48 64 80 96 112 128 144 160 176 192

Operand 2

208 224 240 256

56

40

32

24

16

0

56

32

24

16

0

A quick jJump forward to
Static Resource
consumption Analysis

Static Resource Analysis

= Techniques automatically infer upper and
lower bounds on resource usage of a
program.

= Bounds expressed using monotonic
arithmetic functions per procedure
parameterized by program’s input size.

= VVerification can be done statically by
checking that the upper and lower bounds
on resource usage defined in the
specifications hold.

54

Specified Resource Usage

SU

RESOURCE USAGE

SPECIFICATION UPPER/LOWER BOUNDS (SU/SL)

O SPECIFICATION INTERVALS

SL

INPUT DATA SIZE

Source: Pedro Lopez Garcia, IMDEA Software Research Institute

95

Analysis Result

RESOURCE USAGE

= ANALYSIS UPPER/LOWER BOUNDS (SU /SL)

SPECIFICATION UPPER/LOWER BOUNDS (SU/SL)
O SPECIFICATION INTERVALS

O ANALYSIS INTERVALS

SL

INPUT DATA SIZE

Source: Pedro Lopez Garcia, IMDEA Software Research Institute

56

Verification

A

RESOURCE USAGE

SPECIFICATION UPPER/LOWER BOUNDS (SU/SL) |
[SPECIFICATION INTERVALS : ;

— ANALYSIS UPPER/LOWER BOUNDS (SU / SL)
O ANALYSIS INTERVALS

AL >= s
AND
AU <= SU

'

SL AL > SU = INCORRECT | UNKNOWN | CORRECT

are iy

UNKNOWN

AU < SL = INCORRECT

| -

>

INPUT DATA SIZE

Source: Pedro Lopez Garcia, IMDEA Software Research Institute

57

Worst Case Execution Time

= Worst Case Execution Time (WCET) Analysis:
— WCET model

— WCET bounds (are often safety critical)
 safe, i.e. no underestimation
« tight, i.e. ideally very little overestimation

é“ worst-case performance >
% worst-case guarantee >
S i The actual WOET . From “The Worst-Case Execution-
S| Lower Minimal must be foundor | Maximal Upper Ti Problem — O , f
__g timi BCET observed upper bounded observed WCET timin Ime rFroplem verview o
B b'gﬂgg execution execution bounsc;j Methods and Survey of Tools” by
. line ime WILHELM et al. (2008)
L “ I“"““ I LU L o >
U measured execution times ——»| Ll
possible execution times
timing predictability

Does this work for energy consumption analysis?

Worst Case Energy Consumption

= WCEC analysis goes well beyond WCET analysis.

— data independence of execution time through the use of
synchronous logic

— embedded real-time systems that are timing predictable execute
instructions in a fixed number of clock cycles

— WCET then depends only on the WC execution path

= Energy consumption is data dependent.
— Data dependent energy modelling

arXiv:1505.03374v2 [cs.PF] 3 Nov 2015

Data Dependent Energy Modeling for
Worst Case Energy Consumption Analysis

James Pallister, Steve Kerrison, Jeremy Morse and Kerstin Eder
Dept. Computer Science, Merchant Venturers Building,
Bristol, BS8 1UB. Email: firstname.lastname @bristol.ac.uk

Abstract—This paper examines the impact of operand values
upon instruction level ene models of embedded processors,
to explore whether the requirements for safe worst case energy
consumption (WCEC) analysis can be met. WCEC is similar
to worst case execution time (WCET) analysis, but seeks to
determine whether a task can be leted within an energy
budget rather than within a dudlhe.m;tﬁmg energy models that
underpin such analysis typically use energy measurements from
random input data, providing average or otherwise unbounded
estimates not necessarily suitable for worst case anal

We examine energy consumption distributions of two bench-
marks under a of input data on two cache-less embedded
architectures, AVR and XS1-L. We find that the worst case can
be predicted with a distribution created from random data. We
propose a model to obtain energy distributions for instruction
sequences that can be composed, enabling WCEC malmo-
program basic blocks. Data dependency between instruc Is
also examined, giving a case where dependencies create a bimodal
energy distribution. The worst case energy prediction remains
safe. We conclude that worst-case energy models based on a
probabilistic approach are suitable for WCEC analysis.

I. INTRODUCTION

In real-time embedded systems, execution time of a program
must be bounded. This can provide guarantees that tasks will
meet hard deadlines and the system will function without
failure. Recently, efforts have been made to give upper bounds
on program energy consumption to determine if a task will
complete within an available energy budget. However, such
analysis often uses energy models that do not explicitly
consider the dynamic power drawn by switching of data, instead
producing an upper-bound using averaged random or scaled
instruction models [1], [2].

A safe and tightly bound model for WCEC analysis must be
close to the hardware’s actual behavior, but also give confidence
that it never under-estimates. Current models have not been
analyzed in this context to provide sufficient confidence, and
power figures from manufacturer datasheets are not sufficiently
detailed to provide tight bounds.

Energy modeling allows the energy consumption of software
to be estimated without taking physical measurements. Models
may assign an energy value to each instruction [3], to a
predefined set of processor modes [4], or use a detailed
approach that considers wider processor state, such as the data
for each instruction [5]. Although measurements are typically
more accurate, models require no hardware instrumentation,
are more versatile and can be used in manv situations. such as

M i s S weet
0 32 64 96 128 160 192 224 256
Operand 2

Fig. 1. Power map of mul instruction, total range is 15% of SoC power.

In this paper, we find 15 % difference in a simple 8-bit AVR
processor. This device has no caches, no OS and no high power
peripherals. This difference can be seen in Figure [I] which
shows the power for a single cycle, 8-bit multiply instruction in
this processor. The diagram was constructed by taking hardware
measurements for every possible eight bit input.

Accounting for data dependent effects in an energy model
is a challenging task, which we split into two parts. Firstly,
the energy effect of an instruction’s manipulation of processor
state needs to be modeled. This is an infeasible amount of data
to exhaustively collect. A 32-bit three-operand instruction has
298 possible data value combinations.

Secondly, a technique is required to derive the energy
consumption for a sequence of instructions from such a model.
The composition of data dependent instruction energy models is
a particularly difficult task. The data causing maximum energy
consumption for one instruction may minimize the cost in a
subsequent, dependent instruction. Finding the greatest cost
for such sequences requires searching for inputs that maximize
a property after an arbitrary computation, which is again an
infeasibly large task. Over-approximating by summing the
worst possible data dependent energy consumption of each
instruction in a sequence, regardless of whether such a compu-
tation can occur would lead to a sienificant overestimation of

Worst Case Energy Consumption

= WCEC analysis goes well beyond WCET analysis.

— data independence of execution time through the use of
synchronous logic

— embedded real-time systems that are timing predictable execute
instructions in a fixed number of clock cycles

— WCET then depends only on the WC execution path
= Energy consumption is data dependent.

— Data dependent energy modelling

— Critical questions:
» Which data should be used to characterize a WCEC model?
» Which data causes the WCEC for a given program?

« Which data triggers the most switching during the execution of
the program?

arX1v:1603.02580v1 [cs.CC] 7 Mar 2016

On the infeasibility of analysing worst-case
dynamic energy

Jeremy Morse, Steve Kerrison and Kerstin Eder
University of Bristol

March 9, 2016

Abstract

In this paper we study the sources of dynamic energy during the execution of software
on microprocessors suited for the Internet of Things (IoT) domain. Estimating the energy
consumed by executing software is typically achieved by determining the most costly path
through the program according to some energy model of the processor. Few models, however,
adequately tackle the matter of dynamic energy caused by operand data. We find that the
contribution of operand data to overall energy can be significant, prove that finding the
worst-case input data is NP-hard, and further, that it cannot be estimated to any useful
factor. Our work shows that accurate worst-case analysis of data dependent energy is
infeasible, and that other techniques for energy estimation should be considered.

1 Introduction

A significant design constraint in the development of embedded systems is that of resource con-
sumption. Software executing on such systems typically has very limited memory and computing
power available, and yet must meet the requirements of the system. To aid the design process,
analysis tools such as profilers or maximum-stack-depth estimators provide the developer with
information allowing them to refine their designs and satisfy constraints.

A less well studied constraint is the limited energy budgets that deeply embedded systems
possess. A typical example would be a wireless sensor powered by battery, that must operate
for a minimum period without the battery being replaced. Other examples would be systems
dependent on energy harvesting, or systems with low thermal design points that thus have
a maximum power dissipation level. These constraints can also be approached with software
analysis tools, and several techniques have been developed that allow the estimation of software’s
energy consumption [17, 7, 18].

Within energy estimation, focus has been given to Worst Case Energy Consumption (WCEC):
determining the maximum amount of energy that can be consumed during the execution of the
software. In this paper, we shall study the calculation of worst case energy, considering only the
effects that different software and inputs can have on a system. The objective is to determine

ing

Impact of datapath switch

Operand 2
Operand 2

© o F ANV D F LN O D FH © o
N F Ao k38 A A DO F —
A AN A A A=A A

1 puerad()

Operand 2

© <o F 0 QA O F 0 N O D
DI IS ED A= SD
AN AN AN AN o
T puetad()
=) ~ ~t © 5] =]] <t © 0 o
0 I~ 5= 10 <t <t o o~ — = =

S D O DD S
WSO PP 3

(o}
5=}
]
o i
%
%
%o
2
{
i 9,
:
O o F 0N O O F 0N O O = 0N AUQ
W F A O OO O F AN~ 0O M
AN AN NN A A~~~

T puerod() 1 puetad(

Operand 2

Operand 2

J. Morse, S. Kerrison and K. Eder. 2016. “On the infeasibility of analysing worst case dynamic energy”.

(under review) http://arxiv.org/abs/1603.02580

Energy Consumption Analysis
enables energy transparency

Energy Consumption Analysis
enables energy transparency

H\%}‘J uu\:.-i,;f.&. S et

5700110

' http://us.123rf: com/450wm/kentoh/kentoh1OOB/kentom00600301/7129999%twli|c] 1 0
www.theguardian.com technology-datasflow-as-artsbackground.jpg ’

SRA at the

|ISA Level

= Combine static
resource analysis

(SRA) with the ISA-
level energy model.

= Provide energy
consumption function
parameterised by
some property of the
program or its data.

XC
LLVM-IR
ISA ResourFe
Analysis

ISA
ENERGY

66

Static Energy Usage Analysis

Original Program:

int fact

(Int x) {

1f (x<=0)2
return 1P;

return

= Substitute C_, C,, C, with

(x *2¢ fact(x-1))¢;

Extracted Cost Relations:

Cfact (X) = C, + Cy 1f x<=0
Ceact (X) = C, + CL(X) if x>0
C. (%) = Cq *+ Cepor (x-1)

the actual energy required to execute the
corresponding lower-level (machine) instructions.

= Solve equation using off-the-shelf solvers.

= Result: C, . (x) = (26x + 19.4) nJ

(Note: The above result is based on the XMOS XCore Energy model
introduced earlier. It is not using the energy model from the Exercise.)

ISA-Level Analysis Results

1800 . l Fact(N) . ,

1600&
—~=1.0

1400
1200 0.8 _
= S
£ 1000 v
5 06 ¢
g 800 ©
w Q
o
600 0.4

400
0.2

200
0 10 20 30 40 50 60 20

N

U. Ligat, S. Kerrison, A. Serrano, K. Georgiou, N. Grech, P. Lopez-Garcia, M.V. Hermenegildo and K. Eder.
“‘Energy Consumption Analysis of Programs based on XMOS ISA-Level Models”. LOPSTR 2013. 68

ISA-Level Analysis Results

Fact(N) Fibonacci(N)

180(1 1800
1600 o 1600r 1.2
1400} 1400}
N 1.0
1200} 0.8 _ 1200} N
= e = e
< 1000} iy < 1000 0.8.5
) 062) g
5 soof] @ goof 068
w (] w [
"4 o
600} 0.4 600
{04
400} 400}
{02 |
200} 200} 02
0 10 20 30 40 50 60 00 0y 2 3 4 5 6 7 g’
N N
Power(base,exp) 1e7 PowerOfTwo(N)
: . . . : : : : : . . . T
100} 1o 6
: 12.0
1]
f -4
8o} -
{08 - 1
z s = g 4 ¢ ¢ -d-4- ¢ ¢ -¢-d < 15
= = TA4r = he =
> 60 w < Kol R &
> r (] > [
& 065 & | A« py {1.0 2
4 s 23rie-e-00-0-0-® kS
wi] w |, [}
40r 04" =
207 {0.2
[1]3 L L s L L s L L 0.0 0 —0.5
11 1,129 15,15 15,4000 129,4000 4 6 8 10 12 14 16 18 20
base,exp N

U. Ligat, S. Kerrison, A. Serrano, K. Georgiou, N. Grech, P. Lopez-Garcia, M.V. Hermenegildo and K. Eder.
“‘Energy Consumption Analysis of Programs based on XMOS ISA-Level Models”. LOPSTR 2013. 69

Analysis Options

Less Accurate Predictions

XC

‘ { XC Compiler Front-End

I
LLVM-IR Optlmlzatmns 1
LLVM Code Generator
Lowering to Target Assembly

ISA

= Moving away from
the underlying
model risks loss of
accuracy.

= But it brings us
closer to the original
source code.

70

Energy Consumption of LLVM IR

|

; call void @llvm.dbg.value(metadata !2, i64 0, metadata !28) 10 l
o call void @llvm.dbg.value(metadata {i32 %3}, i64 0, metadata !30) 11 ~
S %zerocmpl3 = icmp eqi32 %3, 0 12 D 0x000102ee: Idw (ru6) r0, sp[Ox1] } 13
= ! bril %zerocmp13, label %ifdone30, label %LoopBody15 |13 é 0x000102f0: bf (Iru6) r0, 0x43 <.label16> 13
|
\\ %i.0 = phi i32 [%postinc, %LoopBody], [0, %allocas] n § 0x000102f4: Idc (ru6) r0, 0x0 { 13
" %ic.0 = phi i32 [%postdec, %LoopBody], [%2, %allocas | 72 < 0x0001026: Idaw (ru6) rll, sp[Ox8] 13
%subscript3 = getelementptr [51 x 51 x i32]]* %d, i32 0, 32 %i.0 73 ILSLX'\L"O'V'je‘ﬁng O 0x000102f8: Idw (ru6) rl, sp[Ox1] 72
store i32 %i.0, i32* %subscript3, align 4 | l
call void @llvm.dbg.value(metadata !{i32 %postdec}, i64 0, metadata !29) 0x000102fa: stw (I3r) r0, r11[r0] 74
o ! fnop
o call void @Illvm.dbg.value(metadata !{i32 %postinc}, i64 0, metadata !26) 78 ;-2
% %zerocmp8 = icmp eq i32 %postdec, 0 79 2}
- br i1 %zerocmp8, label %ifdone, label %LoopBody 80 0x00010302: bt (ru6) rl, -0x5 <.labell7> 80
_—l == >
CFG edge Phi-node adjustment

E(ir;) = Y E(isa)
1sa; €S

K. Georgiou, S. Kerrison and K. Eder, Oct 2015. “On the Value and Limits of Multi-level Energy Consumption Static Analysis
for Deeply Embedded Single and Multi-threaded Programs”. http://arxiv.org/abs/1510.07095

U. Ligat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, J.P. Gallagher, M.V. Hermenegildo, K. Eder. Inferring Parametric Energy
Consumption Functions at Different Software Levels: ISA vs. LLVM IR. In Proceedings of FOPARA 2015.
http://arxiv.org/abs/1511.01413

Analysis at the LLVM-IR Level

[LLVM-IR

XC
LLVM-IR
ISA Resourt_:e
X Analysis

L/

ISA
ENERGY
MODEL

Resource A

Analysis

Mapper A
Tool

ISA
ENERGY |

MODEL -
N._h‘ o

N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, K. Eder. 2015. Static analysis of energy consumption for
LLVM IR programs. In Proceedings of the 18th International Workshop on Software and Compilers for Embedded
Systems (SCOPES '15). ACM, New York, NY, USA, pages 12-21. http://dx.doi.org/10.1145/2764967.2764974

Learning Objectives

v"Why software is key to energy efficient computing

v"What energy transparency means and why we
need energy transparency to achieve energy
efficient computing

v"How to measure the energy consumed by
software

v How to estimate the energy consumed by
software without measuring

v"How to construct energy consumption models

Towards Energy Aware
Software Engineering

Energy Transparency

= For HW designers:

“Power is a 1st and last order design constraint.”
[Dan Hutcheson, VLSI Research, Inc., E3S Keynote 2011]

= “Every design is a pointin a 2D plane.”
[Mark Horowitz,E3S 2009]

Scaling Power and the Future of CMOS

Mark Horowitz, EE/CS Stanford University

75

Energy Transparency

= For HW designers:
“Power is a 1st and last order design constraint.”

[Dan Hutcheson, VLSI Research, Inc., E3S Keynote 2011]

= "Every design is a point in a 2D plane.”

[Mark Horowitz,E3S 2009]
Optimizing Energy

Every design is a point on a 2-D plane

Energy

Performance

76

Energy Transparency

= For HW designers:
“Power is a 1st and last order design constraint.”

[Dan Hutcheson, VLSI Research, Inc., E3S Keynote 2011]

= "Every design is a point in a 2D plane.”

[Mark Horowitz,E3S 2009]
Optimizing Energy

Every design is a point on a 2-D plane

° []
" o] e ® o
L] L] ..

Energy

Performance

77

Energy Transparency

= For HW designers:

“Power is a 1st and last order design constraint.”
[Dan Hutcheson, VLSI Research, Inc., E3S Keynote 2011]

= “Every design is a pointin a 2D plane.”
[Mark Horowitz,E3S 2009]

Optimizing Energy

Every design is a point on a 2-D plane
R R L O T
e oot ° - ..'..O R
? © .. e L] L X

% &

Performance

78

More POWER to SW Developers

= Full Energy Transparency
from HW to SW
= Location-centric programming model

in 5pJd do {...}

“Cool” code for green software
A cool programming competition!

Promoting energy efficiency

to a 1st class SW design goal is
still a very important

research challenge.

79

Pictures taken from the Energy Efficient Computing Brochure at:
ps: ect.innovateuk.org/documen 8891/9 074 e

If you want an ultimate low-power system, then you have to worry about energy
usage at every level in the system design, and you have to get it right from top to
bottom, because any level at which you get it wrong is going to lose you perhaps
an order of magnitude in terms of power efficiency.

The hardware technology has a first-order impact on the power efficiency of the system, but you've also got to have
software at the top that avoids waste wherever it can. You need to avoid, for instance, anything that resembles a polling

loop because that's just burning power to do nothing.

| think one of the hard questions is whether you can pass the responsibility for the software efficiency right back to the
programmer.

Do programmers really have any understanding of how much energy their

algorithms consume?

| work in a computer science department, and it's not clear to me that we teach the students much about how long their
algorithms take to execute, let alone how much energy they consume in the course of executing and how you go about
optimizing an algorithm for its energy consumption.

Some of the responsibility for that will probably get pushed down into compilers, but | still think that fundamentally, at the
top level, programmers will not be able to afford to be ignorant about the energy
cost of the programs they write.

What you need in order to be able to work in this way at all is instrumentation that tells you that running this algorithm has
this kind of energy cost and running that algorithm has that kind of energy cost.

You need tools that give you feedback and tell you how good your decisions are.
Currently the tools don't give you that kind of feedback.

February 2010, acmqueue Interview with Steve Furber
The designer of the ARM chip shares lessons on energy-efficient computing at: http://aueue.acm.ora/detail.cfm?id=1716385 Steve Fu rbe r

Thank you for your attention

/\g.‘ R ECOSM®

@ ICTenergy
cadence

y, MOS e s Kerstin.Eder@bristol.ac.uk

,,,,,

