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Why energy harvesting?

,
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Future of aerospace wireless sensor network
Sensor node

GatewayUser Engine shaft

Ball bearing schematic as
 part of the jet engine

Objective: To develop a smart system incorporating

multiple sensors, energy harvesting, wireless communications, and data analytics

for intelligent monitoring of aero-engines.
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Future of aerospace wireless sensor network

GatewayUser Engine shaft
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Electronics

Transceiver
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Future of aerospace wireless sensor network
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Industrial applications and challenges
I Existence of range of frequencies.
I Vibration levels can be very low (<25 mg).
I Reliable operation is required over many years.
I Operate across wide temperature ranges.
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(a) Vibration data from AC motors at UK Waterworks. (b) Wiliams and Yates, 1996.
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Perpetuum PMG17 - 100

Water utility
Outdoor pump

Harvester bandwidth optimized to
deliver 0.3mW from 95% of industrial
AC motors with no adjustment.
Maximum power output 50 mW.   
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Temperature stability

Mechanical resonators can drift with temperature changes. Without
considering the stabilisation, harvesters can stop working when the
temperature is different.
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PMG17 temperature stability
The PMG17 has a temperature compensated resonator keeping the centre
frequency fixed to within +/- 0.1 Hz over the full industrial temperature
range.
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A simple electromagnetic energy harvester
I Cantilever electromagnetic harvester
I Tunable between 44-60Hz
I Packaged size: 0.8cm3, 1.6g
I Power = 58mW at 1.12V at max input accelerations of 0.6ms−2

I 51% of mechanical energy converted into electrical

S. P. Beeby, 2007
,
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Basic considerations for a linear energy harvester
Mechanical energy stored in the generator is

Pav =
mω3

n X2

4ζ
, (1)

m is the inertial mass, ωn is the natural frequency, X is external vibration
displacement, and the damping ratio ζ =

c
2mωn

.
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S. P. Beeby, 2007

,
11

https://eprints.soton.ac.uk/264798/1/jmm7_7_007_-_microgenerator.pdf


Linear time-varying systems

(a) (b)
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x = X cos(ωt + φ) x = X cos(ωt)

mÜz + c Ûz + k(t)z = −m Üx mÜz + c(t) Ûz + kz = −m Üx
k(t) = kc + kp cos(Ωt) c(t) = c0 + cp cos(Ωt)

These systems have been exploited for vibration energy harvesting. (a) B. Zaghari et
al., 2014. (b) M. Scapolan et al., 2017.
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Examples of parametrically excited systems with
time-periodic parameters
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motion of

the riser
roll 
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ring gear planet gear

Queen Elizabeth ΙΙ 

Dartford, England

tower

deck

 cables

vertical excitation

motion of
the cargo
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History repeats itself

The first people introduced and studied linear time-varying systems:

I Michael Faraday (1791-1867)

I Franz Melde (1832-1901)

I John William Strutt, 3rd Baron Rayleigh (1842-1919)

I Émile Léonard Mathieu (1835-1890)
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Linear energy harvesters with time-varying parameters
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(a) M. Daqaq et al., 2008. (b) Y. Jia et al., 2014.
,
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Modified Mathieu equation

Üz + 2 ζ ωn Ûz + ω2
n

(
1 + δ cos( Ω t)

)
z = 0

I damping ratio

I natural frequency
I parametric amplitude
I parametric frequency
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Modified Mathieu equation

Üz + 2 ζ ωn Ûz + ω2
n

(
1 + δ cos( Ω t)

)
z = 0

Stability and solutions of the Mathieu equation can be studied using:
I Floquet theory
I Method of Harmonic Balance (HBM)
I Perturbation methods (Methods of Averaging, Multiple Scales)
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Unbounded solution

B

A

Strutt diagram with HBM and the numerical phase portrait for point δ = 0.5 and
Ω

ωn
= 1 is solved for 20 cycles (Initial condition: z0 = 0.002m, Ûz0 = 0ms−1).
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Limit cycle solution

B

A

Strutt diagram with HBM and the numerical phase portrait for point δ = 0.5 and
Ω

ωn
= 1.744 is solved for 200 cycles (Initial condition: z0 = 0.002m, Ûz0 = 0ms−1).
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Unbounded solution

A B

Strutt diagram with HBM and the numerical phase portrait for point δ = 0.5 and
Ω

ωn
= 2.24 is solved for 200 cycles (Initial condition: z0 = 0.002m, Ûz0 = 0ms−1).
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Bounded solution

B
A

Strutt diagram with HBM and the numerical phase portrait for point δ = 0.5 and
Ω

ωn
= 2.27 is solved for 200 cycles (Initial condition: z0 = 0.002m, Ûz0 = 0ms−1).
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Effect of damping and instability thresholds

δth2 = 4 ζ

δth1 = (8 ζ)
1
2
_

Reducing the instability
threshold is beneficial for:
I parametrically excited
vibration energy
harvester

I parametrically excited
amplifiers and filters
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The effects of changing frequencies on response amplitude
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Maximum steady-state response amplitude a at different frequencies. δ = 0.4,
ζ = 0.1, and base excitation amplitude is 0.001m (B. Zaghari, 2016)
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The effects of changing frequencies on response amplitude
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The effects of changing frequencies on power consumption
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The effects of changing frequencies on power consumption
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Amplitude a and phase ϕ of the system responses

(a) Linear non-parametric (b) Linear non-parametric

(c) Linear parametric, above the
instability threshold

(d) Linear parametric, above the
instability threshold
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The effects of phase difference
The gain associated with the LPE system is

Gain =
a |δ,0
a |δ=0

. (2)

This gain is calculated analytically from the amplitude of the steady-state
response.

Gain versus base excitation phase difference φ for a linear parametrically excited
system (B. Zaghari et al., 2016).
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The effects of time-varying damping

c(t) = c0 + cp cos(Ωt)

m

c(t)

z

y

x

k

x = X cos(ωt)

Free vibration results, x = 0

Relative displacement z of the system for different values of parametric damping (a)
cp = −0.1c0, (b) cp = −c0, and (c) cp = −4c0 (M. Scapolan et al., 2017).
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The effects of time-varying damping - base excited case

Average harvested power for parametric damping close to instability and
non-parametric damping. ω and ω0 are the base excitation and resonance frequency
(M. Scapolan et al., 2017).
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Nonlinearity in parametrically excited systems

Why nonlinearity?
I Real systems are nonlinear.

I Modern mechanical systems are more easily forced into a nonlinear
regime.

Sources of nonlinearity:
I Geometrical

I Material

I Nonlinear forces

I Physical configuration

,
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Electromagnetic system

I

rc

rc

I
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 equilibrium

  position

magnet 1

magnet 2
beam  h

Electromagnetic forces generated by the current flow in coils are nonlinear forces and
can influence the design of an electromagnetic energy harvester (B. Zaghari et al.,
2018).
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Nonlinear parametrically excited (NPE) system

Üz + 2εζωn Ûz + ω2
n

(
1 + ε δ cos (Ωt)

)
z + ω2

n

(
ε α + ε γ cos (Ωt)

)
z3 = 0

I parametric amplitude

I cubic nonlinearity
I cubic parametric nonlinearity
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Nonlinear parametrically excited (NPE) system

Üz + 2εζωn Ûz + ω2
n

(
1 + ε δ cos(Ωt)

)
z + ω2

n

(
ε α + ε γ cos(Ωt)

)
z3 = 0

I bookkeeping parameter

Stability and solutions of the nonlinear parametrically excited (NPE) system
can be studied by:
I The second method of Lyapunov
I Methods of Harmonic Balance (HBM)
I Perturbation methods (Methods of Averaging, Multiple Scales, and
Varying Amplitudes)
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Effect of cubic stiffness nonlinearity
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Hardening nonlinearity
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Softening nonlinearity
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Frequency response plot for NPE

Amplitude-frequency
Stable Unstable
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εζ = 0.03, ωn = 31.62rads−1, εδ = 0.25, εα = 150m−2, and εγ = 80m−2.
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Frequency response plot for NPE

Amplitude-frequency Transition curves
Stable Unstable
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(a) (b)

(c) (d)

The phase portraits correspond to different points on the transition curve when ζ = 0
(B. Zaghari, 2016).
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Conclusions

I Vibration energy harvesting research is not mature yet. Many research
challenges still exist in applying the technology.

I The restrictions and limitations of real world environments must be
continually designed around in order to create the best technology
possible.

I Linear harvesters produce more energy in most applications where a
clear characteristic frequency is present.

I Linear time-varying harvesters can increase the bandwidth and the
power harvested.
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