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Whole-systems energy transparency

Energy is consumed by . .
physical processes. Application Software

Yet, application programmers
should be able to “see”
through the layers and
understand energy
consumption at the level of
code.

The same applies to designers
at every level.

How is this possible?




Energy of software?

» Energy is consumed by hardware

« Butin these lectures we atfribute
energy cost to software

« Whye
— (to summarise some of Kerstin's points)



Reason 1

 We take the application
orogrammer’s viewpoint
—programmers don’t know much
about hardware

—high-level languages hide the

polatform from the programmer

* Which is usually a Good Thing, don’t you
agreee




Reason 2

» Energy efficiency as a design godl
from the start

« Get an energy profile for a program as
early as possible

® Analyse the code to find out how
much energy a program will use

® Deliver software with energy
guarantees




Reason 2 - continued

@ Don't wait to test energy efficiency on
hardware, after the software is

developed
Development Deployment Ay
machine plcﬂ:orm SR &

@ It might be too late to fix “energy bugs”



Reason 3

e YOU Can save more energy at the
software level than the hardware level

® There are more energy optimisation
opportunities higher up the system
stfack.

® Much energy is wasted by application
software



Energy transparency

 Our aim is to let the programmer
“see” the energy usage of the
code

— without executing it

— so that the programmer can “see”
where the program wastes energy

— experiment with different designs




Software factors affecting energy

Important factors are

« Computational efficiency
« Quality of low-level machine code
« Parallelism

e Amount and rate of communication



Computational efficiency

* There Is a strong correlation between
fime and energy consumption (for a
single thread)

« Execute as few instructions as possible
to achieve the given task, saving
energy

 Furthermore, the machine will return

more quickly to an idle (low-energy)
state



Computational efficiency (2)

 Hence a large part of the energy-
aware programmer’s job for sequential
code is the same as for performance-

awdareness

» Get the job done quickly, using
efficient algorithms and data structures



Low-level code optimisation

« Given the same high-level code (e.g. C+
+) there could be many ditferent
machine instruction programs.

« Lower energy can be achieved e.qg.

— using VLIW (Very Long Instruction Word)
Instfructions and vectorisation

— exploitation of low-power processor states
using frequency and voltage scaling (DVFS).

« Energy-aware compiler’s responsibility



Parallelism

* |s it more energy-efficient to parallelise a
task?e

« The answer is not straightforward.

» Execution fime might be reduced but
more energy might be consumed

memmmmmsmsssssmsssmseee m o m = SEQ
€ e>e +te,+e; ?7??
e, PAR
""""""""""" I~ If the processors for each process
3 . .
------------- are idenfical, then the parallel program

probably uses more energy.
There is some overhead for managing
threads and communication.




Parallelism and clock speed

t f = processor clock frequency

P = power

* LE
° _e'
° _e'

VvV = voltage

« P= cV?f (where cis a constant)
« E =Pt (when we run the processor for t fime units)

- Hencee=¢e,+e,+ ... + g, forn processes, if the
same fotal number of instructions Is executed, af
the same frequency f.

« Butif we reduce f, the total energy will reduce

be

cause V can also be reduced and P is

proportional to V2!



Parallelism (cont’d)

* Hence it is worth parallelising (to save
energy) If
— there is little or no idle time in each

Processor
« a waiting processor is wasting energy

— the clock speed can be reduced in some
or all processors, compared to a single
process execution



How can static analysis help?

o Automatic complexity analysis

— understand the best, worst and average
cases

— focus on optimising hot loops

» Timing analysis in multi-threaded code

— compare parallel algorithm performance,
throughput, eftc.

— identify wait times, potential low-power
stfates, efc.



How can static analysis help? (2)

« Analysis of other energy-related
resources

— communication volume and frequency
— analysis of cache behaviour
— analysis of memory footprint



SW developer’s view

 How do we visuadlise the results of
analysise

 This is a difficult guestion in itself.

* Here are some examples and thought
experiments



Example

77. #pragma unsafe arrays

;g. int biqL.JadCaS(.:ade(bif]uadState &state, int xn) { biquadCascade(BANKS)
. unsigned int ynl;

80. int ynh; =

81. %

82. for(int j=0; j<BANKS; j++) { 157 * BANKS + 51.7

83. ynl = (1<<(FRACTIONALBITS-1)); nJoules

84. ynh = 0;

85. {ynh, ynl} = macs( biquads[j]l.b@®, xn, ynh, ynl); .. .

86. {ynh, ynl} = macs( biquads[jl.bl, state.b[jl.xn1, ynt This is an estimate of

87. {ynh, ynl} = macs( biquads[jl.b2, state.b[jl.xn2, ynt

88. {ynh, ynl} = macs( biquads[jl.al, state.b[j+1].xn1, y the EBVWE?FSJS/ used kD\/ the

89. {ynh, ynl} = macs( biquads[jl.a2, state.b[j+1].xn2, vy :

90. if (sext(ynh,FRACTIONALBITS) == ynh) { function.

91. ynh = (ynh << (32-FRACTIONALBITS)) | (ynl >> FRAC

92. } else if (ynh < 0) { . . .

93. | h = 0x80000000; It is a linear function of

94, else

95, ynh = Ox7fffffff; the value of BANKS

96. ¥

97. state.b[jl.xn2 = state.b[j]l.xn1;

98. state.b[jl.xn1 = xn;

99.

100. xn = ynh;

101. }

102. state.b[BANKS].xn2 = state.b[BANKS].xn1;

103. state.b[BANKS].xn1 = ynh;

104. return xn;

105. ¥
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Visualise energy of program blocks

Lines 55-55  block_1
0.0 Joules

Lines 56-56  block_2
0.0 Joules

Lines 91-91  block_9
0.0 Joules

Lines 92-92  block_10
0.0 Joules

Lines 95-95  block_12
0.0 Joules

Lines 93-93  block_11
4.7179123E-9 Joules

Lines 61-60  block_4
§.272582E-9 Joules

Lines 97-82  block_13
1.0328986E-8 Joules

Lines 60-60  block_3
1.1377956E-8 Joules

Lines 73-72  block_B
1.270418E-8 Joules

Lines 68-72  block_5
1.4513382E-8 Joules

Lines 79-82  block_7
2.0760377E-8 Joules

Lines 102-104 block_14
2.5603944E-8 Joules

Lines 83-90  block_3
6.657973E-8 Joules




Which code blocks are hot?
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Example

in port inP = XS1_PORT _4A; void producer(int n, chanend couts) {
out port led_port = XS1_PORT _1E; for (int i=0;i<n;i++) {
printf("i=%d\n",i); S 13.8%
void consumer(chanend couts) { couts <: i;
int j; }
while (1) { }
12.3% couts > |;
\ for (int i=0;i<j;i++) int main () {
led_port <: (i & 1); chan a; int x;
} par {
) while (1){
72.4% inP > x; L 1.5%
producer(x,a);
Simulation with random 0..15 values on )
input port. | consumer(a);
} ;
) o 4




Energy a design goal for programmers

#pragma check energy(proc (x))<5pJd
int proc(int x) {

Output:
Checked 0<x<5=energy (proc (x))<5pJd



Summary of goals

» Tools for the programmer

— that give information about the energy
usage of programs without running them
(energy transparency)

— that allow energy assertions to be
checked (energy design goals)



Semantics and program analysis

» To achieve the goals we need tools for
program analysis

* Program analysis is based on formal
program semantics

— the mathematical study of program
meanings



Programs are machines (that consume energy)

n=4;

z=1;

while (n>0) {
Z =7Z*n;
n=n-1;

}
print(z);

Semantics gives the “machine” defined
by a program.




Analysis of programs

« A program is a physical object. e.qg.

— some symbols on paper
— a pattern of bits in memory

» But what is the meaning of a programg?
 This Is program semantics.



Tiwari’'s Energy Equation (from
Kerstin's slides)

Ep = Z(B,,; X Nj) + Z(Oi.j X Nij) -

U i,

= N, is the number of times insfruction i is
executed.

= N,;is the number of fimes instruction i is followed
by instruction j in the program execution.

= The aim of static analysis is to determine N, and
N;; for all possible program executions

HII_ /113 2



Program semantics

n=4; To execute or analyse

z=1; this program,

while(n>0){ |we need to understand
Z=z*n; the meaning of teh symbols
n=n-1; such as “while”, "“>", "*",

} o, MY, ete.

print(z);




Different styles of program
semantics

« Operational semantics
— small steps (from one state to the next)
— big steps (from the start to the end state)
— Hoare-Floyd conditions

« Denotational semantics
— the mathematical function represented
by a program
— obtained by composing the functions
representing Ifs parts




Phases of semantic analysis

1. Syntax analysis (parsing)

— breaking the program into is basic parts
and determining its stfructure

2. Semantic translation

— representation of the program in some
suitable mathematical or logical form

3. Semantic inferpretation

— using the semantic representation to
analyse the program execution




Program syntax tree (parsing)

Statement List
n=4 z=1 while print(z)
n=4; n>0 Statement List
z=1;
while (n>0) {
Z=2z*n;
} n=n-1; Z=Z*Il n:n_l
print(z);




From syntax tree to flow graph

Grammar Rules Semantic Rules for flow of control
If — if E then S, else S, E.true =S,
E.false := S,

S,.next := If.next
S,.next = If.next
While — while E S, E.true =S,
E.false := While.next
S,.next := While
StatementList — S, S, ..... Sy S;next=15;,; (=1ton-1)
S,.next := StatementList.next

S — StatementList | If | While | Print | Assign
StatementList.next := S.next
If.next := S.next
While.next := S.next
Print.next := S.next
Assign.next := S.next



From syntax tree to flow graph

Statement List /
z=1;

while (n>0) {
Z=z*n;
n=n-1;

}
print(z);




From flow graph to state automata

start

n<0, print(z)
n z > stop




Exercise

1. Draw the syntax
tree

2. Draw the control
flow graph

3. Draw the state
automaton

while (m != n) {
1f (m > n) {

m = m-n;
}
else {

n = n-m;
}




Phases of semantic analysis

1. Syntax analysis (parsing)

— breaking the program into is basic parts
and determining ifs structure

2. Semantic translation

— representation of the program in some
suitable mathematical or logical form

3. Semantic inferpretation

— using the semantic representation to
analyse the program execution




From automaton to predicate logic

Horn clauses

true = reachable,
(reachable, A n=4 A z=1)

— reachable,(n,z)
(reachable,(n,z) An<OAZz'=z"n A n'=n-1)

— reachable,s(n’,z’)
(reachable;(n’,z') An=n’ Az=z")

— reachable,(n,z)
reachable,(n,z) An=0 A print(z) )

—  stop




Logical representation

program point | transition constraint program point k

1 1 1
e(Xy, Xp, vees Xy X1, X', i, X)) Jo |
X1, Xos wers Xn, X', X o e X',

(reachable;(x;, X,, ..., X)) Ae(X;, X oo X, X'y, X9, 1y X))
— reachable,(x’;, X5, ..., X",)




Example: A rate limiter®

Listing 5. Rate limiter

void main () |
float x old, x;

x_old = 0;
while (1) |
X = input(-1000,1000);
if (x >= x_old+1)
X = x_old+1;
if (x <= x _old-1)
x = x_old-1;
x old = x;

*Example by Monniaux

L]
e old:=2x




Rate limiter - logic representation

r1(X,X_old) :-
X_old=0,
ro(_,_).
r1(X,X_old) :-
r5(X,X_old).
r2(X,X_old) :-
X >=-1000,
X =< 1000,
r1(_X_old).
r3(X,X_old) :-
X1 >= X_old+1,
X = X_old+1,
r2(X1,X_old).

r3(X,X_old) :-
X < X_old+1,
r2(X,X_old).

r4(X,X_old) :-
X1 =< X_old-1,
X = X_old-T,
r3(X1,X_old).
r4(X,X_old) :-
X > X_old-T,
r3(X,X_old).

rS5(X,X_old) :-
X_old=X,
r4(X,_).




More examples from ENTRA tool

708 process finished: cp tst/ex.pl tmp/mac.pl

[ JON ) Entra Front-end version 0.2
Source  Model/Compiler LLVM  ISA [Control flow NS URETT Source Block Energy " LLVM Block Energy Analysis Verification >
Control flow graph Run
“Input XC source basic block energy Run

Source Block Energy

~Output

oan

50 s )

146 vasdock Ohster s vandesk Toer)

I —
)

e

ok Pone )

1

../xc2ast.sh -r xcprg/count.xc

rOutput

Lines 59-60
0.0 Joules

Lines 63-64
0.0 Joules

Lines 52-52
0.0 Joules

Lines 51-51
0.0 Joules

Lines 52-52
Lines 67-67
Lines 54-54

Lines 46-51

block_4
block_5
block_6
block_7¥

block_2

3.483765E-9 Joules™

block_&

1.74 1884 3E-8 Joules

block_3

2.1096625E-8 Joules

block_1

2.1762443E-8 Joules




Identification of basic blocks

* A basic block is a section of “straight-
ine” code.

— The start of a block is a branch or merge
point

— The end of a block is a branch or jump

 Basic blocks can be extracted from
the control flow graph

« Every statement in a basic block is
executed the same number of times




Phases of semantic analysis

1. Syntax analysis (parsing)

— breaking the program into is basic parts
and determining ifs structure

2. Semantic translation

— representation of the program in some
suitable mathematical or logical form

3. Semantic interpretation

— using the semantic representation to
analyse the program execution




Program analysis

* Program properties
« Program invariants

« Global properties that depend on
summary of an infinite numtber of
behaviours

* Prove absence of bugs (verification)
rather than presence (testing/
simulation)



Invariants

* Many program analysis and
verification tasks involve proving
INvariants

« An invariant is an assertion that is frue
at a given program point.

« We consider invariants on energy
usage.



Example invariant

[

void main() |
float x old, x;
x old = 0;
while (1) |
x = input(-1000,1000);
if (x >= x _old+1)
Xx = x old+1;
if (x <= x old-1) .
x = x old—1; Check asserfion
x old = X; <« -1000 < x_old < 1000
]
}




Proving invariants

» To prove that invariant P holds at

program point |, prove the following
implication

reachable(x;,...x,) — P
which is equivalent to
7( reachable(x;,...x,) A 7P)



Proof by approximation

Overapproximation P
of the set of points

where
reachable(x, ...,
is true.

_____________________________________

Contained
within P, hence

_____________________________________

reachableg(x;,....x,) =P



Energy invariants

« The program state can contain resource
counters.

* reachable,(x,,....x,.€) means that the
total energy consumed is €, when the
program reaches point k

« SO we can express and prove assertions
about energy (or other resources)

« More on this later...



Two basic techniques

 How to capture all reachable statese
— answer, fixpoint techniques

 How to capfture an infinite set of
statese
— answer, abstract inferpretation

« These two methods underlie much
program analysis



Fixpoint computation

« Sounds complicated, but it is a very
simple procedure

* |T1s a closure or saturation procedure



Fixpoint example

« Consider a route network, with stations a,b,...,h

|




post(S) function

¢ Let S be a set of stations.

« post(S) is the set of stations reachable in one
step from S. E.g. post({a.h}) = {b,c.d,g}

|




Reachability as a fixpoint

* The set of stations reachable from an
initial set S, called Reach(S) is defined
as the smallest set Z such that Z = F(Z)

where F(Z) =S U post(Z)

» This can be computed as the [imit of a
sequence 9, F(2), F(F(2)), ...



Example

» Find the stafions reachable from a.

F(Z) = {a} U post()

F(e) = {a}

F({a}) = {a.b,c.d}
F({a.b,c,d}) = {a,b,c,d.f}
F({a,b,c.d.f}) ={a,b,c,d.e,f}
F({a,b,c.d.e.f}) ={a.b.c.de.f}

fixpoint found {qa,b,c,d,e.f}

|




Exercise

» Using the same graph, compute the
set of states reachable from e, using o
fixpoint computation.



The reachable states of a program

 We apply the same idea to find the
reachable states of a program, starting with
the inifial state.

Nn <0, print(z
n z print(z) > sfop




The reachable states of a program

start ) 3
| ozs 0 0
n <0, print(z) {(4.1)} {}
n z S stop | [{(4.1)) {(3.4))
- {(41).(34))  {(3.4))
l o (41),034))  {(3.4).(212)}
n' 7 (41).034),  {(34),(212),(1.24)}
(2,12),(1,24),
(0.24) }

(n,z) represents the values of N and z at a given point




Infinite fixpoints

 However, usudlly the set of reachable
states of a program is infinite, and the
sequence could keep on growing

 We might never reach the fixpoint

e |n this case we use abstraction



Abstract interpretation

Example

* 476300 x -576 =2/4351680

* |s the above equation correcte



Rule of signs

* The rule of signs Is an absfraction of the
multiplication relation

+ X+ = +
+X— = —
— X+ = —
—X— = +

We can check incorrectness, but not
correctness with the rule of signs.



The interval abstraction

* The value of a variable is abstracted by
an inferval

— The variable has any value within the interval

 We can perform operations on intervails,
as we did for signs

« E.g.[3,10] + [-2,6] = [3+(-2), 10+6] = [1,16]

« Exercise. Whatis [3,10] — [-2,6]¢



Example: interval abstraction

« The set of pairs of values {(4,1),(3.4),

(2,12),(1,24),(0,24) } can be abstracted by
the pair of intervals ([0,4], [1,24])

« Sonisbetween 0 and 4, zis between 1
and 24.

« But information has been lost

— the pair (3,19) is also consistent with the
intervals.

— the intervals give an over-approximation of
the reachable states.



Convex polyhedra

* A more precise abstraction than
iInfervals is given by convex polyhedro

« Convex polyhedra are linear
iInequalities among the state variables



Example convex polyhedron abstraction

. e rl(I,JdJ) :-
var 1,3:1nt; I=0,J=10.
begln r2(I,J) :-

, . ri(I,J).
1=0; j=10; r2(1,J) :-
while i1<=j do Il =< Jl,

, _ I = I1+2,

1 = 1+2; J = Ji-1,

= -1 r2(I1,J1).

J J 1’ r3(I,Jd) :-

done; I >= J+1,
end r2(I1,J).




Approximate reachable states

r1(I,J) = [I=0,J=10].
r2(I,J) = [-I >= -16,I >= 0,I+2*J=20].
r3(I,J) = [-3*I >= -26,3*I >= 22,I+2*xJ=20].

This result is computed fast, using the
Parma Polyhedra Library to perform the
operations on convex polyhedra.




Summary so far....

 We can translate a program to a state
autfomaton

« We can compute over-approximation
of the reachable states of the program

— using fixpoint computation and
abstraction

 We can use the approximation to
check assertions about the program.



