
Software and Energy-aware
Computing

Static analysis and optimization

John Gallagher
Roskilde University

ICT-Energy: Energy consumption in future ICT devices

Summer School, Aalborg, Denmark, August 13-16, 2016

Energy models – block-based

/113 71

n z

n’ z’

n = 4
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z)
stop

start

LLVM
block

ISA
block

ISA
energy
model

eISA

eLLVM

[e1,e2]

Adding energy to the model

/113 72

n z e’

n’ z’ e

n = 4
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z) e = e’+107
e

e

e = 0 e is an “energy counter”

e’ = e+17

e = e’+42

e’ = e+3

On each transition, increment the
energy counter by the amount of
energy required to execute the transition.
The numbers are obtained from a model

Estimating total energy

•  The total energy consumed by the
program is given by the energy
counter in the reachable “stop” state.

•  For this example, the analysis yields a
value of 304 (initial value n=4)

•  However if the input data is unknown,
we would get a relationship between
input value n and energy e.

•  In the example, e = 17 + n*45 + 107

/113 73

Beyond linear energy estimates

•  With polyhedron or interval
abstractions, we are limited to linear
expressions.

•  This is quite restrictive and approximate
•  A better approach is given by deriving

cost functions from the automaton,
and solving them

/113 74

Deriving cost functions

/113 75

n z

n’ z’

n = ?
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z)
stop

start 1

3

2 4

Let cost2(n) be the cost of
the loop starting at 2.
We can write a recurrence relation
cost2(n) = cost2(n-1) + 45 (if n > 0)
cost2(n) = 0 (if n ≤ 0)
The cost of the whole computation
for input n is 17 + cost2(n) + 107

Solving cost relations

•  Tools like Mathematica are capable of
solving many recurrence relations.

cost2(n) = cost2(n-1) + 45 (if n > 0)
cost2(n) = 0 (if n ≤ 0)

has a closed-form solution
cost2(n) = 45*n

/113 76

More complex cases

•  By solving energy recurrence
equations we can get non-linear
energy functions

•  E.g. a matrix multiplication program for
matrices of size n
42.47 n3

 + 68.85 n2+ 49.9 n + 24.22 nJoules

/113 77

Some available tools for cost
analysis

•  CiaoPP (IMDEA Software, Madrid)
–  a resource analysis tool based on solving cost

relations (using Mathematica)
–  designed for Prolog programs, adapted to

imperative languages
•  COSTA (UCM, Madrid).
–  Can analyse resources such as time and energy

for Java and Java bytecode (uses the PUBS
solver)

•  Termination analysis tools
–  several tools for proving termination of programs

are being adapted for resource analysis

/113 78

Trickier examples

•  Loops counters
can have inter-
dependencies

•  Complexity of
example is
O(2.m), not
O(m2)

/113 79

void main(int m) {
 int i=m, n = 0; //stack = emptyStack();
l1 : while (i > 0) {
 i--;
 if (?) //push
 n++; //stack.push(element);
 else //popMany
l2 : while (n > 0 && ?)
 n--; //element = stack.pop();
 }
}

Analysis of communication and
timing

•  We consider a language with
synchronous channel communication

•  Usually, threads enter some periodic
behaviour, synchronising among
themselves

•  The programmer needs a model of
how much work and time a thread
uses between communications

/113 80

Potential power optimisations (1)

•  Sometimes, threads should run as
slowly as possible, while still meeting
deadlines from other threads
–  thus analysis of timing and synchronisation

is critical

•  Reducing clock frequency of cores
saves power

/113 81

Potential power optimisations (2)

•  Threads that communicate a lot
should be close (take account of
communication infrastructure).

•  Bottlenecks can be removed by
shifting tasks or introducing more
threads

•  Very inactive threads can be merged
with other threads.

/113	82	

Parallel execution

The threads run
until they reach a
synchronisation point.

After synchronising, they
continue to the next, etc.

Timing analysis is vital.

The left thread always
waits for the other.

Possible energy
optimisations:

1. slow down the left
thread
2. give it some more work
to balance the load
3. put in power-saving
mode while waiting

/113 83

Behaviour of a single thread

Communication-
free code

Communication-
free code

Communication-
free code

Communication-
free code

fork comm comm

comm comm join

/113 84

Each thread is parsed into blocks of communication-free code, separated
by synchronous communications.
Assume that the communication channels are staticallly known.

Example thread behaviour

/113 85

P

R

Q

S

4

b

c

d
g

f

e

h

1

a

2 3

5

6 7 8

8 threads in a pipeline with a split in the middle.
P,Q,R and S are some functions on the values passed along.

Analysis of the sequential components

•  We assume that we used the
sequential techniques already
mentioned
–  to get energy estimates for P,Q,R and S
–  to get execution time estimates for P,Q,R

and S

/113 86

A1

A2

start

a

a

H1

H2

start

h

h

B1

B2

start

a

a

P

b

E1

E2

start

d

R

f

D1

D2

start

c

c

Q

e

G1

G2

start

g

g

S

h

C
1

C5

start

b

b

C2

b
C3

C4

c

d

F1

F5

start

e

e

F2

f
F3

F4

g

g

d

Automata for the individual threads

/113 87

Energy and power estimates

•  The energy of the whole cycle consists
of
–  the total energy for the tasks in the cycle
– an overhead for the number of active

threads (obtained from the critical path)
– an estimate of the energy used while

idling
•  The power (Watts) is E/T, where E is the

energy and T is the time of the cycle

/113 88

Task durations

•  Assume that each task has a duration
– could be an interval [lower, upper]
– or in general a constraint that could

depend on data values
–  these can be obtained from a timing

analyser and/or automatic complexity
analysis

– Let the duration of Task k be dk

/113 89

Synchronisation

/113 90

Task 1

Thread 1 Thread 2

Task 2 Task 4

Task 3

channel c

Tasks 2 and 4
can start
simultaneously as
soon as both Tasks
1 and 3 have
completed and
the channel
communication
has been made.

Synchronisation constraints (1)

/113 91

Task 1

Thread 1 Thread 2

Task 2 Task 4

Task 3

channel c

n ≥ 0, m ≥ 0

t2
n = max(t1

n + d1, t3
m + d3)

t2
n = t4

m

If Task 2 (or 4) is a loop header
then replace t2

n (or t4
m)

with t2
n+1 (or t4

m+1)

loop counter n loop counter m

Let tkm be the time of the mth

firing of task k.

(Inspired by SDF graphs)

Counting communications

/113 92

T0	

Tm	

start	

a(0)	

T1	

b(1)	

Let cpre be the number of channel
communications on c in the loop prefix.

Number every channel communication,
for each channel c in the loop

c(1), ... c(k)

cpre + n * k + j = the number of
communications on c when
c(j) in the loop is encountered, when n
iterations of the loop are completed.

b(2)	

a(1)	

a(k)	

Annotate the channel communications
so that they can be counted.

loop
prefix

loop

Synchronisation constraints (2)

/113 93

Task 1

Thread 1 Thread 2

Task 2 Task 4

Task 3

channel c

On a channel c, there
is the same number of
operations at each
channel end.

cpre1 + n*k1 + j
 cpre2 + m*k2 + i
=

loop counter n loop counter m

We assume that each
channel joins exactly
two threads.

Example (logical encoding)

/113 94

fires__B2(A,5+B) :-
 1+C*2+1=0+A*1+1,
 1+C*2+1>=0,
 C>=0,
 A>=0,
 fires__C2(C,B),
 fires__G(A,D),
 5+B>=300+D.
fires__B2(A,300+B) :-
 1+C*2+1=0+A*1+1,
 1+C*2+1>=0,
 C>=0,
 A>=0,
 fires__C2(C,D),
 fires__G(A,B),
 5+D<300+B.

B1	

B2	

start	

a	

a	
G	

b	

C1	

C5	

start	

b	

b	

C2	

b	
C3	

C4	

c	

d	

A and C are the loop counters og G and C2

300

5

Analysis of the constraints

•  Generate the complete set of
synchronisation constraints

•  Solve them
– more generally, obtain an approximate

solution (abstract interpretation again!)

•  For each task, derive a relationship
between n and t, where t is the task’s
nth firing time.

/113 95

Transient and periodic behaviour

•  Typically, threads take a few iterations to
reach a steady state.

/113 96

t

n

First few firings
happen rapidly,
then there is a
slowdown as
delays from
other threads
take effect.

Approximation of throughput

/113 97

t

n

Approximation
using a finite
union of convex
polyhedra

Analysis results

•  For the 8-thread pipeline example
•  Given task durations
– G = 300
– Q = 334
– R = 500
–  S = 250
– all other tasks = 5

•  Derive period of threads = 610 or 305
•  Some threads loop twice as fast as others

/113 98

Thread activity

•  Thread 1 = 5/305 (1.6%)
•  Thread 2 = 305/305 (100%)
•  Thread 3 = 20/610 (3.2%)
•  Thread 4 = 339/610 (56%)
•  Thread 5 = 505/610 (83%)
•  etc.

/113 99

A B C

E	

D

F	 G Ha	 b	

c	

d	

f	

e	
g	 h	

300

500

334

250

Other information

•  Throughput and thread activity obtained
directly from the solution to the
constraints

•  Other information that can be derived
from earliest firing time includes
– when one task definitely waits for another
– which tasks can run simultaneously
– which tasks on different threads do not run at

the same time
–  frequency of each channel communication

/113 100

Energy and power estimates

•  The energy of the whole cycle consists
of
–  the energy for each task in the cycle
– an overhead for the number of active

threads (obtained from the critical path)
– an estimate of the energy used while

idling
•  The power (Watts) is E/T, where E is the

energy and T is the time of the cycle

/113 101

Possible transformations

/113 102

A	 B	 C	

E	

D	

F	 G	 H	

A	

B	

C	

E	

D	

F	

G	

H	

c	 f	B	 G	

A B C

E

D

F G H

Energy optimisation for Android
game code case study

•  Work by Xueliang Li, Roskilde University (to
appear in SCAM 2016)

•  Energy of game code is highly
dependent on user interaction

•  We modelled the energy consumption
the Cocos2d-Android game engine

•  Energy consumption of operations in the
source code was estimated using
machine learning techniques
– based on a large number of test cases for

different interaction scenarios.

/113 103

A Source Code energy model

•  Android code is Java
•  What is the code’s energy cost? How

can we measure it?
•  The compiler produces Dalvik

bytecode, which itself is interpreted by
the Java virtual machine

•  Is it realistic to attribute energy costs to
source code?

/113 104

Energy measurement of test cases

/113 105

Learning source-code operation costs

/113 106

Identifying which ops use most energy

/113 107

0" 2" 4" 6" 8" 10"

Greater_int_int"
Assign_double_double"

Addi8on_float_float"
Division_int_float"

Substrac8on_float_float"
Assign_boolean_boolean"

NotEqual_Object_null"
Return_Object"

Parameter_float"
AssignAnd_float_float"

Declara8on_float"
Declara8on_Object"

FloatBuffer.put_method"
Not_boolean"

Declara8on_int"
Mul8_int_int"

And_boolean_boolean"
Increment"

NotZero_boolean"
BlockGoto_for"

Mul8_float_float"
Assign_Object_Object"

Less_int_int"
Assign_int_int"

ArrayReference"
BlockGoto_if"

Addi8on_int_int"
Assign_float_float"
Parameter_Object"
MethodInvoca8on"

Energy"Consump8on"(mJ)"

Top 10 ops
account for
72.1% of
energy usage

Which code blocks use most energy?

/113 108

0"

250"

500"

750"

1000"

1250"

1500"

1750"

2000"

"E
ne

rg
y"
Co

ns
um

p3
on

"(J
ou

le
)"

Blocks"

In"Applica3on"
At"3000ATimesAExecu3on"

A few
blocks
dominate
energy
usage.
These are
targets for
energy
optimisation

Optimisation. Example 1

/113 109

Energy
consumption
of the code
without and
with the
changes in
Click & Move.

Overall saving:
6.4%

Optimisation. Example 2

/113 110

 Energy consumption
of the code without
and with the
changes in Orbit.

Overall saving:
50.2%

Energy optimisations through energy
transparency

•  A thorough energy analysis of a suite
of code enabled insight into where
most energy was consumed

•  This enabled source-code
transformations to be focussed on the
most effective areas.

/113 111

Useful references
•  B. Steigerwald and A. Agrawal. Green software. In San

Murugesan and G. R. Gangadharan, editors, Harnessing
Green IT : Principles and Practices, chapter 3. John Wiley
& Sons, Hoboken, NJ, USA, 2012.

•  U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V.
Hermenegildo, J. P. Gallagher, and K. Eder. Inferring
Parametric Energy Consumption Functions at Different
Software Levels: ISA vs. LLVM IR. In M. Van Eekelen and U.
Dal Lago, editors, Foundational and Practical Aspects of
Resource Analysis. Fourth International Workshop
FOPARA 2015, Revised Selected Papers , Lecture Notes in
Computer Science. Springer, 2016.
http://arxiv.org/abs/1511.01413

/113 112

/113 113

Thank you

