@ ICTenergy

Software and Energy-aware

Computing
Static analysis and optimization

John Gallagher
Roskilde University

ICT-Energy: Energy consumption in future ICT devices
Summer School, Aalborg, Denmark, August 13-16, 2016

Energy models - block-based

start

n=4
z=1
n<0, print(z)

n z > stop
[e.e,]

SLvm
n>0 %
[v 2’ =zn*]rJ s/ N

Cisa
LLVM % 4
n' 7' block s =

- / block

|

Adding energy to the model

e=0 l e is an “energy counter”

n<0, print(z) e=e'+107

nz e > e
n>0
A n' =n-1
e=e 4l 7' =7%n On each transition, increment the
V energy counter by the amount of
energy required to execute the transition.
n' 7' e The numbers are obtained from a model

Estimating total energy

* The total energy consumed by the
program is given by the energy
counter in the reachable "“stop” state.

» For this example, the analysis yields a
value of 304 (initial value n=4)

 However if the input data is unknown,
we would get a relationship between
INnput value n and energy e.

* Inthe example, e =17+ n*45+ 10/

Beyond linear energy estimates

* With polyhedron or inferval
abstractions, we are limited to linear
expressions.

 This Is quite restrictive and approximate

* A better approach is given by deriving
cost functions from the automaton,
and solving them

Deriving cost functions

n <0, print(z) 4
nz —> stop
j R;Zon;] Let cost,(n) be the cost of
""" Ithe loop starting aft 2.

3| | We can write a recurrence relation
cost,(n) = cost,(n-1) + 45 (if n > 0)
cost,(n) =0 (if n<0)

The cost of the whole computation
forinputnis 1/ + cost,(n) + 107

Solving cost relations

» Tools like Mathematica are capable of
solving many recurrence relations.

cost,(n) = cost,(n-1) + 45 (if n > 0)
cost,(n) =0 (if n<0)

has a closed-form solution
cost,(n) = 45*n

More complex cases

* By solving energy recurrence
equations we can get non-linear
energy functions

« E.g. a matrix multiplication program for
martrices of size n
42,47 N3+ 68.85 n?+ 49.9 n + 24.22 nJoules

Some available tools for cost

analysis

« CiaoPP (IMDEA Software, Madrid)

— aresource analysis tool based on solving cost
relations (using Mathematica)

— designed for Prolog programs, adapted to
imperative languages

. COSTA (UCM, Madrid).

— Can analyse resources such as time and energy
fOT JCI;/CI and Java bytecode (uses the PUBS
solver

« Termination analysis tools

— several fools for proving termination of programs
are being adapted for resource analysis

Trickier examples

o void main(int m) {
LOOpS counters inti=m, n=0; //stack = emptyStack();

can have inter- 1 : while (i >0) {
: i
dependencies £ (2) //push
. ' n++; //stack.push(element);
Complexfry of else //popMany
example is 2: whie (n>0&&?)
0(2 m) not n--; //element = stack.pop();
. ’ }
O(m?))

Analysis of communication and
 We consider a language with
synchronous channel communication

« Usually, threads enter some periodic
behaviour, synchronising among
themselves

* The programmer needs a model of
how much work and time a thread
uses between communications

Potential power optimisations (1)

¢ Sometimes, threads should run as
slowly as possible, while still meeting
deadlines from other threads

— thus analysis of fiming and synchronisation
Is crifical

« Reducing clock frequency of cores
sQves power

Potential power optimisations (2)

» Threads that communicate a lot
should be close (take account of
communication infrastructure).

» Bottlenecks can be removed by

shiffing tasks or infroducing more
threads

* Very inactive threads can be merged
with other threads.

Parallel execution

Timing analysis is vital.

The left thread always
waits for the other.

Possible energy
optimisations:

1. slow down the left
thread

2. give it some more work
to balance the load

3. put in power-saving
mode while waiting

/113

..@A...

€ e —

The threads run
until they reach a
synchronisation point.

After synchronising, they
confinue to the next, etc.

Behaviour of a single thread

Communication- comm) Communication- comm
free code free code

‘I
-
‘l
-

- m

s a8

-

comm i ion- | comm i ion- |join
Communication Communication J
free code free code

Each thread is parsed into blocks of communication-free code, separated
by synchronous communications.
Assume that the communication channels are staticallly known.

Example thread behaviour

8 threads in a pipeline with a split in the middle.
P.Q,R and S are some functions on the values passed along.

|

Analysis of the sequential components

« We assume that we used the
sequential techniques already
mentioned
—to get energy estimates for PQ,R and S

— to get execution time estimates for P,Q,R
and S

Automarta for the individual threads
start
X{s’ror’r l start g j start
Al B ' D1
o)
a a C
C2
a A2 P :/\ Q
ls’ror’r bj, q ca b 9;/ C
D2
F1 B2 J

e C4
ls’ror’r F2 d Xs’ror’r
C5

e Gl
g F3
R gj S XSTO rt
F4

g
E2 - ij G2 n
d
h H2

[L

Energy and power estimates

* The energy of the whole cycle consists
of

— the total energy for the tasks in the cycle

— an overhead for the number of active
threads (obtained from the critical path)

— an estimate of the energy used while
idling

« The power (Watts) is E/T, where E is the
energy and T is the fime of the cycle

Hll_ /113

Task durations

« Assume that each task has a duration
— could be an interval [lower, upper]

— or in general a constraint that could
depend on data values

— these can be obtained from a timing
analyser and/or automatic complexity
analysis

— Let the duration of Task k be d,

Synchronisation

Thread 1 Thread 2

Tasks 2 and 4

Task 1 Task 3 can start

simultaneously as

soon as both Tasks

1 and 3 have
channel ¢ completed and

G ——— > the channel

communication

¥ v has been made.

Task 2 Task 4

Synchronisation constraints (1)

Thread | Thread 2 Let t,™ be the time of the m'h
firng of task k.
Task 1 Task 3 n>20,m=0
to" = max(t, ™+ d,, tz™+ dy)
_channele |
b0 = t,™
4 4 :
If Task 2 (or 4) is a loop header
then replace t,» (or t,™)
Task 2 Task 4 with 21 (or t;ml) *
(Inspired by SDF graphs)
loop countern loop counter m

Counting communications

Annotate the channel communications
so that they can be counted.
B lstart
loop Let c . be the number of channel
prefix = T0 communications on c in the loop prefix.
0
o— _20) Number every channel communication,
T for each channel c in the loop
b(1) |,
|OO}:-)< b(2) ': a(k) C(]), C(k)
a(1) Cpe ¥ N¥ .k +i = the number of
communications on ¢ when
Tm c(j) in the loop is encountered, when n
_— iterations of the loop are completed.

Synchronisation constraints (2)

Thread 1 Thread 2 On a channel ¢, there
is the same number of
operations at each
channel end.

Task 1 Task 3
We assume that each
channel joins exactly
two threads.

_channele .
Cprel_'-n*kl +-j - Cpre2+m*k2+i
A 4
Task 2 Task 4
loop counter n loop counter m

Example (logical encoding)

fires_ B2(A,5+B) - tart
1+C*2+1=0+A*1+1, lsar

1+C*2+1>=0, c1
C>=0, lstart b
A>=0,
fires_ C2(C,B), B o
fires_ G(A,D), a b b
5+B>=300+D.

fires_ B2(A,300+B) :- 500

C

1+C*2+1=0+A*1+1, D ; >
1+C*2+1>=0,

C>=0, d

A>=0, CS\/

fires_ C2(C,D),

fires_ G(A,B),

5+D<300+B. A and C are the loop counters og G and C2

Analysis of the constraints

« Generate the complete set of
synchronisation constraints
* Solve them

— more generally, obtain an approximate
solutfion (abstract interpretation again!)

« For each task, derive a relationship
between n and t, where tis the task’s
n™ firing fime.

Transient and periodic behaviour

« Typically, threads take a few iterations to
reach a steady state.

First few firings
happen rapidly,
f then there is a
slowdown as
delays from
other threads
take effect.

N

Approximation of throughput

Approximation
; using a finite
union of convex

/ polyhedra

N

Analysis results

« For the 8-thread pipeline example
 Given task durations

— G =300

- Q=334

— R =500

- S =250

— all other tasks = 5
» Derive period of threads = 610 or 305

« Some threads loop twice as fast as others

Thread activity

« Thread 1 =5/305 (1.6%)

e Thread 2 = 305/305 (100%)
« Thread 3 =20/610 (3.2%)

« Thread 4 = 339/610 (56%)
« Thread 5 =505/610 (83%)
» efc.

|

Other information

« Throughput and thread activity obtained
directly from the solution to the
constraints

« Other information that can be derived
from earliest firing fime includes
— when one task definitely waits for another
— which tasks can run simultaneously

— which tasks on different threads do not run at
the same time

— frequency of each channel communication

Energy and power estimates

* The energy of the whole cycle consists
of

— the energy for each task in the cycle

— an overhead for the number of active
threads (obtained from the critical path)

— an estimate of the energy used while
idling
« The power (Watts) is E/T, where E is the
energy and T is the fime of the cycle

Possible transformations

H /113

Energy optimisation for Android
game code case study

» Work by Xueliang Li, Roskilde University (fo
appear in SCAM 201 6)

» Energy of game code is highly
dependent on user inferaction

- We modelled the energy consumption
the Cocos2d-Android game engine

» Energy consumpftion of operations in the
source code was estimated using
machine learning technigues

— based on a large number of test cases for
different interaction scenarios.

A Source Code energy model

« Android code is Java

 What is the code’s energy cost¢ How
can we measure ite

 The compiler produces Dalvik
bytecode, which itself Is interpreted by
the Java virtual machine

* |5 it realistic to aftribute energy costs 1o
source codee

Energy measurement of test cases

energy consumption (e)

source (|
8 op3 34 ... 1 4 ...
I : |
2 opb 1T 21 5 ...
Case2 —o 2P0 °F op. P >
ei
J

elm

["opd op7 opl ... op9 opil......)

Casem b
(1) _ . . :
n i = # executions of op j in case i

Learning source-code operation costs

Numbers of executions of the energy

operations in one test case Energy costs of the operations

1
i
i
i
i
r._-_
i
i
i

C (1 1 1
[Pg)”g)_---_.';: g l” \ : [er
) (2] [cost:))
1 2 [2
| CoSt9
X —

n(m_l) (m—1) (m—1) Em—1
1() 2() l() \ cost; | o
\ ™ ny” .. m™) Aimingto \[€m! /
‘ ‘ obtain __..--" "'
Acquired from log file e ~ Measured

entifying which ops use most energ

MethodInvocation
Parameter_Object
Assign_float_float
Addition_int_int
BlockGoto_if
ArrayReference
Assign_int_int
Less_int_int
Assign_Object_Object
Multi_float_float
BlockGoto_for
NotZero_boolean
Increment
And_boolean_boolean
Multi_int_int
Declaration_int
Not_boolean
FloatBuffer.put_method
Declaration_Object
Declaration_float
AssignAnd_float_float
Parameter_float
Return_Object
NotEqual_Object_null
Assign_boolean_boolean
Substraction_float_float
Division_int_float
Addition_float_float
Assign_double_double
Greater_int_int

’//
7777777777777 77777777 7777777777 7777 777777 77777 777777777 77777777)
/IIIIIIIIIII/I/IIIIIIIIII/I/I/IIIIII/III/IIIIIIII/IIIIIIIIIIII
iz
'///I/I/IIII/IIIIII/IIIIIII/I/I/I/IIII/II/III/I/I/I/IIA .
i
77777777 777777 777777777777 777777777772
'I/II/IIIIII/I/II/I/IIIIII/I/I/I/II/I/A
[Z77777777777777 7777777777 777777772

72.1% Energy Consumption
/III/I/I/I/I/I/I/I/IIIII//I//I/I/I/

//////I/I/I///////I/I/I/I///////I/
prziiiiziiiza
YALSLLLLLLSLLLLLLLSL LSS LSS LSS Yo
P77777777777777777777777777777,
’/IIII/I/I/II/III/III/IIII/‘
7777777777777 7777777777,
/II/IIIIIIII/I/IIIIIIIIII
iz
SISLLLLLSSLSLSSSSS LSS/,
'I/III/I/II/I/IIIII/IA
P77777777777777777777)
'I//I/IIIIII/I/II/IIJ
777777777777777 7772
iz
e
SSSSSSSSSSSS7Y.

SISSSSSSS SIS

SISSS LSS/ S/

rrzzzzzz4

SSSSSSS Y

z27.1% Enelé'gy Consuniwption

Top 10 ops
account for
72.1% of
energy usage

0 2 4 6 8 10

Energy Consumption (mJ)

Which code blocks use most energy?

N
o
o
o

=
~
Ul
o

=
Ul
o
o

A few
blocks
dominate
energy
usage.
These are
targets for
energy
optimisation

=
N
un
o

=
o
o
o

Energy Consumption (Joule)

Optimisation. Example 1

]
[=+]

Energy
275 consumption
3‘:.. of the code
S 77 without and
gm with the
> changes in
g 26| Click & Move.
O
Bo .
L2 Overall saving:
= . 6.4%
24.5
Original +If Comn +Inner-Class + Loop-Invt + Inter-Class
M CcMm Mi

Optimisation. Example 2

* Energy consumption
RN B of the code without
gzs i and with the
5 changes in Orbit.
£ 20 P
§ Overall saving:

S” 50.2%
§m 1o
&
w5
0 1

Original + Loop-Invt + Loop Full-Use LF
CM Unrolling

Energy optimisations through energy

fransparency
* A thorough energy analysis of a suite

of code enabled insight into where
MOost energy was consumed

* This enabled source-code

transformations to be focussed on the
most effective areas.

Useful references

« B. Steigerwald and A. Agrawal. Green soffware. In San
Murugesan and G. R. Gangadharan, editors, Harnessing
Green IT : Principles and Practices, chapter 3. John Wiley
& Sons, Hoboken, NJ, USA, 2012.

« U. Ligat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V.
Hermenegildo, J. P. Gallagher, and K. Eder. Infernng
Parametric Energy Consumption Functions at Different
Software Levels: ISA vs. LLVM IR. In M. Van Eekelen and U.
Dal Lago, editors, Foundational and Practical Aspects of
Resource Analysis. Fourth International Workshop
FOPARA 2015, Revised Selected Papers , Lecture Notes in
Computer Science. Springer, 2016.
http://arxiv.org/abs/1511.01413

Thank you

ENTRA

|

