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Outline

Turbulence: observations and main questions.

Kolmogorov theory, energy cascade,
iIntermittency.

Modeling turbulence: A dynamical system
approach

| apologize, | will make an extreme confusion
between laboratory and space turbulence!

| promise to not mention words like “fractals”,
“sandpiles”, etc. during this talk.



“In manibus codices, in oculis facta”
(Sentence by S. Agostino)

Oput; + uaOqu; = —O0; P + vd%u;

e AlthOugh we know that
% fluid flows, and then

. turbulence, are
< described by Navier-
Stokes equation, we
have to look first at real
nature to watch their
richness and beauty,
and realize how
dramatically difficult
is their description.




Turbulence everywhere,




In general we don't care about
turbulence ...

PP ' Turbulence: It's a killer ride”
= IR |(R. Liotta and L. Molly, 1977)

... apart when a nice lady asks us to keep fastened
seat belt because some turbulence is approaching ...



Turbulence
(La turbolenza since Leonardo da Vinci).
Yet in lack of a formal definition

From latin “turba” (tvppn):
confusion (of people)

= An “italian” definition:

el . Aturbulent boy” in all Italian schools
' is a young fellow who rebels against
ordered schemes. Following the same
line, “turbulent” is called the behavior
of a flow which (apparently) rebels
against deterministic rules imposed by
classical mechanics.

R. Bruno & V. Carbone,

) s ), iy g e ¥ Living Rev. in Solar Phys.
Y ol M Y ada 5 " e e 'b(f "‘&i:‘"f"‘h"? AP A o 5] hﬂl'-'-J
I Py k| L DD Y SR S P (2005)




A peculiar stochastic process:
strange mixing of order and chaos

Main features:

1) Randomness
both in space and
time

2) Turbulent
“structures”
(eddies) on all
scales

3) Unpredictability
and instability to
very small

Turbulence is far from a sequence of perturbations

random numbers with a well defined
spectrum and uncorrelated phases. You
cannot reproduce a “turbulent field” by
putting at random sand on a table!



Fluid turbulent samples

The velocity trace recorded in two different
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Atmospheric turbulence



The solar atmosphere extends in the interplanetary
space, thus generating a turbulent flow:
THE SOLAR WIND

Turbulence in space is rather complicated,
because the fluid motion generates
currents and magnetic fields that interact
with the fluid flow. This is the Magneto-
Hydro-Dynamic (MHD) turbulence.

In 1957 the first spacecrafts
flying in space measured
turbulent fluctuations. The
solar wind is a rather peculiar
turbulent flow because it is
essentially made by charged
particles, say mainly protons
and electrons (PLAMA).

50 years later the first
space flights, in 2007 we
celebrated the International
Heliophysics Year.




The solar wind as a wind tunnel

1 V (km/s)

?gg : W-mw*'”“ww%ﬁ*w b A st MW“HWW‘“""WMMM - B .
! ' ' ' ! ' ' ' ' ' 2T = v; T b, = v; £ ——
21 B() ’ - VAT
0| MW A M T i A
1 Z (kmis) | In situ measurements of
800 - ) . ok ‘ ML il . .
o ﬂ%m{\WﬂWNWWM;MMW‘ MWWWMW{WWMWWWWMWWWWT ﬂ. hlgh amplltu de
w00 4 Z (knis) . " fluctuations for all fields
= A L "y | " . .
200 JWWWF‘WMMWMW“MWW LT o PP WWMWWWWWMM (Ve|OC|ty, magnetIC,
c okms) temperature...)
A

0
-30

303 A L e oS Al A unique possibility to

measure low-frequency

0’41 P (M) b turbulence in plasmas
02 M Ve N, b, o gl )
| , . ,”’“‘“"'A . b i A . over a wide range of
2.0x10° 2,2x10° 2 4x10° 2 6x10° 2.8x10° scales
Time (sec)
For a review:

R. Bruno & V. Carbone, Living Review in Solar Physics, (2005)
http://www.livingreview.org

An updated version will be available (hopefully) on March 2008




Turbulence in plasmas: laboratory
experiments

Plasma generated for nuclear fusion,
confined in a reversed field pinch
configuration. High amplitude
fluctuations of magnetic field,
measurements (time series) at the
edge of plasma column, where the
toroidal field changes sign.

0=

Magnetic and
electrostatic
turbulence data
from RFX (Padua)
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Osborne Reynolds: UL
guantitative experiments %

v kinematic viscosity
U large-scale characteristic fluid velocity
L characteristic length

[

— -
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Osborne Reynolds noted that the dynamics is determined ONLY by a
combination of characteristic parameters. As R increases the system
becomes turbulent. > Reynolds number is the control parameter



Flow past an obstacle becomes
turbulent

R=10" R=10° R~10"
Laboratory Atmosphere Astrophysical fluid flows



Turbulence is a
characteristic of the FLOW
and is described by
Navier-Stokes equation

di’. iy + “—rrdr:v“': — (-).'P + I"‘C‘}f}- U; Incompressible

Navier-Stokes equation
ﬁ ﬁ u — velocity field
P — pressure
Nonlinear Dissipative v — kinematic viscosity

R— Nonlinear UL
Dissipative U

Turbulence is the result of nonlinear dynamics
(fluid flow) of Navier-Stokes equations.



Three main questions from Leonardo
(Codice Atlantico)

ranspie nupanilah nanglofuinl sk
ol it snannmmie “Holish pzrslotun ol suoh
more pipaniish nznslofunnl wuok

After mirror reflection

doue laturbolenza dellacqua sigenera
doue la turbolenza dellacq® simantiene plugho
doue laturbolenza dellacqua siposa

Three main questions

1) Where the turbulence of water is generated
2) Where the turbulence of water maintains for long ?
3) Where the turbulence of water comes to rest




The exact solution worth $1M

CLAY MATHEMATICS INSTITUTE

Dedicated to increasing and disseminating mathematical knowledge

MILLENNIUM PRIZE PROBLEMS

Statement from the Directors and Scientific Advisory Board

| Birch and Swinnerton-Dyer Conjecture | Hodge Conjecture | avier-Stokes Eguations | P vs NP | Poincare Conjecture | Riemann
Yang-Mills Theory | | Rules etc |

Ab

In order to celebrate mathematics m the new millennium, The Clay Mathematics Tnstitute of Cambridge, Maszsachusetts (CII) has named
seven " Millenmum Prize Problems ™ The Scientific Adwisory Board of CMI selected these problems, focusing on important classic questions
that have resisted solution over the vears. The Board of Directors of CII have designated a §7 million prize fund for the solution to these
problems, with §1 million allocated to each. During the Millennium meeting held on May 24, 2000 at the Colléze de France, Timothy Gowers
presented a lecture entitled “The Impotrtance of Mathematics,” aimed for the general public, while Tohn Tate and Iichael Ativah spoke on the
problems. The CMI imwnted specialists to formulate each problem.

In the following, some (rough!) answers for free!



1th question

Where the turbulence of water
IS generated (?)




For example from Kelvin-Helmotz
instability

Instability at the interface of two streams of fluid
that move with different velocities

—_

Numerical simulation

Real experiment




Turbulence and deterministic rules

Equations that describes turbulence are time invariant, they
describe deterministic phenomena.

Laplace:

The knowledge, at a given instant of time, of ALL forces in nature and the
situation of ALL particles, yields a complete predictability of dynamics.

Poincaré:

Even if we can describe ALL forces in nature, the situation of all particles
at a time are know only APPROXIMATELY. Very small differences in the
initial conditions should give rise to big errors at future times. Predictability
is (practically) impossible.

Turbulence seems to violate the deterministic law of Laplace, even if
equations are deterministic. It seems to be described in the framework of
Poincare phenomena. Very small perturbations yields unpredictability.




Turbulence: the main phenomenon
of deterministic chaos

Some nonlinear phenomena are

described by deterministic equations
that are extremely sensitive to initial

conditions.

Turbulence born because
equations are nonlinear and
extremely sensitive to initial
conditions

DETERMINISTIC CHAOS
(contradiction in terms!) = extreme
sensitivity from initial conditions.
Consequence - unpredictability

In non chaotic systems unpredictability is
limited to some very peculiar initial
conditions (unstable fixed point). The point
needs an aid from a small fluctuations.
Once the point decides the side, we can
predict the future (left or right).

?
2N
,/ \,\_,
// \\, / \\
\ / \
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Chaos - unpredictability

In chaotic systems unpredictability is intrinsic to the system, that is the
system is “unstable” for almost all initial conditions. In chaotic systems
the distance between two nearby trajectories diverges exponentially:
example the Lorentz billiard.

D(t) = D(0) + At D(t) = D(0) e*

Predictable Unpredictable



Two competing models for the onset of turbulence:
Landau vs. Ruelle & Takens

1) Landau:
turbulence appears at the end of an infinite serie of Hopf
bifurcations to quasi-periodic motion as R increases, each
adding an incommensurable frequency to the flow

The more frequencies > .
The more stochasticity Chaos is absent

2) Ruelle & Takens:
incommensurable frequencies cannot
coexist, the motion becomes rapidly
aperiodic and turbulence suddenly will
appear, just after three (or four)
bifurcations.

The system lies on a subspace of the phase

A " Chaos is present
space: a “‘strange attractor”.



Accurate experiments on turbulence
(not engineering but physicists!)

Gollub & Swinney, Phys. Rev. Lett., 1975
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Onsel of Turbulence in a Rotating Fluid*®

J. B, Gollubfi and Harry L. Swinney
Fhypsies Deparfment, Cily College of the Oty Usiversity of New York, New Fork, New York [O0X1
(Recwlved 17 Jsly 1975
Light-scattering measuromenta of the time=dependent local mdial velocity in & rotaking
fluld reveal three distinet transitions as the Réynolds nimbie L8 gereased, cach of which
aidds 3 niw froquency to the veloeity spectrum. At a higher, sharply defined Reymolds
mmber all dscrete spoctral pedks muddonly disapgear, COur ohacrvailons disagres with

4 Landaw pleture of the oaset of turbulence, but are perhaps consistent with propesals
of Buolle and Takens.

After the appearance of two
incommensurable
frequencies, the spectrum
becomes broad abruptly

This very basic observation disagree with the
Landau picture and seems to be in
agreement with the idea by Ruelle & Takens.

But an example of “strange attractor” ?



E.N. Lorenz, 1963

Edward Lorenz in 1963 derived a Galerkin approximation with only three modes
to get a simplified model of convective rolls in the atmosphere (2D).

VA0 4 il = 06l | Vo = pVEV* 0 = god, 1 ih'l + [fj i, — il 'H._] 1= =i+ HLT:TI
e,z 1) = Ay (f)sin . sin _— . .
! [ I Jsin } Retains only three modes in
- e 2 : :
e, y.z) = H|_|i-’!1'|rr-{ ;JI r-ill{ y ] b 3 a1 ) sin ( y ) a Fourier expansion
A rme el inel® . .
o= e () e g o ris the ratio between the
i | P DU € (;_ . |) ; Raylaigh number and the
I Ld Y R critical one for convection
% = —TAubB, ‘f_u; (r > 1 implies convection);
o V2 | ! Jr b is a geometric factor
110t} — (1 +a%)x(t) F = —ox + oy (aspect ratio);
DR (Ll
B, (1) = X2 fla Fely(t) 1 _
7w Ra ay c is the Prandtl number
fl fta* T = —Iz+rr—y . ) )
Buall) = —— () at (ratio between kinematic
i 1 . .
dz o ba viscosity and thermal
ac — T diffusivity)




An example of “strange attractor”

The trajectories of the system, for certain settings, never settle down to a fixed
point, never approach a stable limit cycle, yet never diverge to infinity. The
phase space is contracting to a set of dimension zero (dissipative system!),...
trajectories are “condemned” to wonder forever within the contracting finite
portion of the phase space without intersections (deterministic system).
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Strangeness:
Extreme sensitivity to initial conditions

5000 trajectories from
different initial conditions.
The initial conditions are
confined in a square of
amplitude 10-°




Chaotic dynamics from Navier-Stokes equations:
nonlinear evolution - 1D map (discrete times)

ou _ —(u-V)u+VP|+WVu+f Let us add an external forcing

Ot \' term to restore turbulence
1 2

u ., —u =—2u —u +1 u,, =1-2u,

u e[0,1]

“poor man’s NS equation”

u ., =T(u,) honlinear map

1) Stochastic behaviour (randomness)
2) No predictability: two nearby
trajectories diverge exponentially
(sensitivity to initial conditions)

Chaotic dynamics in a
; (very simple)
iteration n deterministic system




Sensitivity to initial conditions ?

u =sin(mx, —7/2)

[ 2x,  x,€l01/2]
" 20-x) x, €[1/2,]]

. 2
un+1 T 1 o 2un

A transformation
leads to the tent map

(stretch & fold)
x, =0.a ,(1)a,(2)..aC(i)..
Numbers written in binary format

a,(i)=[0,1]
Iterates of the tent map : _
lead to the (from right to left) a ()= a,(i+l) a, (=0
“Bernoulli shift” m l—a,(i+1)a (1)=1

A small uncertainty surely will grows in time !
> | No predictability on arbitrarily long times
Sensitivity of system to every small perturbations




Why chaos is “interesting™?
Chaotic dynamic leads to stochasticity

X, =TQOT®..T(x,)=T"(x,) Apply the map n times

As a consequence of the chaoticity, the trajectory of a
SINGLE orbit covers ALL the allowed phase space

Ergodic theorem: Let f(x) an integrable function, and let
f(T"(x,)) calculated over all iterates of the map. Then for

almost all x,

. ) 1 Here the ensemble
}VIE”}NZ]F (17" (x,)) = jf (x)dx is generated by the
n=0 0 chaotic dynamics,
from the uniform

<f >TIME - <f >ENSEMBLE measure in [0,1].




Turbulence and unpredictability in the
atmosphere: the “butterfly” effect and

weather forecasting e

‘_m

Per colpa di un chiodo si perse lo zoccolo
per colpa di uno zoccolo si perse il cavallo
per colpa del cavallo si perse il cavaliere
per colpa di un cavaliere si perse il messaggio
per colpa di un messaggio si perse la battaglia
per colpa di una battaglia si perse il regno

G. Herbert

" Lontana previsione a
lungo dura, vicina
prevision meno sicura”
Weather forecasting for long times? Detto popolare




2th question

Where the turbulence of water
maintains for long (?)




Where the problem comes from

Oy + 1, Ogtt; = — P + v ()i 1w,  From Navier-Stokes equations we
can find two characteristic times for
/ / the two basic processes: a
) convective (eddy-turnover) time and
{ = a diffusive (dissipative) time

Tg ™~ — TD ™~ —

Uy %

] Their ratio, at the largest scale L,
p_™ _UL is the Reynolds number

At the largest scale L the energy
injection rate (per unit mass) turns out

_ Uz U to be R times greater than the energy
b T L2 dissipation rate
The turbulent system cannot dissipate the
72 Us whole energy injected at the largest scale L,
€1, ~ ~ = Rep just a fraction of it. How the system can
1 L dissipate the excess energy ?




Example: the swimmer

U=1 m/sec

L~Im

The swimmer puts 1 Watt/Kg in the system, and
reaches a Reynolds number of the order of 106, The

swimmer must produce turbulence



Turbulence: how fluid flows at high Reynolds
number can dissipate energy !l

Injection of energy

The dissipation is effective only at
very small scales: the system
dissipates energy simply through a
transfer of energy to small scales
(eddies distortion) -
energy cascade

The Richardson’s phenomenology:
breaks down of eddies at large scales
and transfer of energy to small scales.

Dissipation of energy



Fourier analysis of equations

ou,(k,?)

P M, (K)D uy(p,Ou, (k—p,0)—vk’u, (k,0)+ f,(K,7)

. k,k,
M oy, (K) =—ikp) O, — PE

The evolution of the field for a single wave vector is related to fields
of ALL other wave vectors (convolution term) for which k = p + q.

Infinite number of modes involved for inviscid flows

In the ideal case, the nonlinear The nonlinear term is responsible
term conserves global energy | =) | for 5 redistribution of energy over

the whole set of wave vectors.




Richardson phenomenology In
K-space

« Three ranges of scale (lengthscale = 1/k):
energy containing, inertial (cascade),
dissipative

pumping disstpation
1 energy cascade T
| e

ke k

v



An exact law from Navier-Stokes equations
_ Two-points differences along the LONGITUDINAL
Aui N [ui (x+0)- U, (x)] direction (stationary stochastc variables)

Under the conditions of homogeneity and isotropy, in the stationary state
a Yaglom'’s relation can be derived from Navier-Stokes equation:

0 4
<AugAu,-2 > =2v &<A“f > —_<5 >f < ¢ > averaged energy dissipation rate

In the inertial range 4
(a FORMAL definition — < Au3> — < g> ¢ | 4/5-Kolmogorov law
of inertial range!) ¢ 5

Differences of the streamwise component of velocity between two points
along the longitudinal direction. Characteristic fluctuations across eddies

at the scale ¢

a) The negative sign IS CRUCIAL!!! (irreversibility) - energy cascade

b) The third-order moment of fluctuations is related to the energy dissipation
rate and is different from zero - turbulence MUST shows some
nongaussian features, at least within a certain range of scales




The 4/5-law in action within fluid flows

Sreenivasan & Dhruva (1998), atmospheric turbulence

1.0

LIK

R LK L]
-

1.4

] [ECI] TTHHE KK D

Being the only exact and nontrivial relation of turbulence, the 4/5-law represents
a cornerstone for modeling of turbulence. Any serious attempt to describe
turbulence MUST (at least) satisfies this law.



Turbulence: the legacy of A.N. Kolmogorov (1941)

Dynamical properties of turbulence are
random, but statistical properties are
predictable and universal

When the flux is homogeneous along a hierarchy
el B of vortices (similarity hypothesis) then:
S %Q‘ | Au, = £33 Inthe inertial range
“ash _v.f‘"'ﬁf i 1
(e} =s,0= 0k~ 1/4
0.5 1 1.5 é 275 3

S,(0) = <[u(x . u(x)]2> - 2I E(k)[l - Siz fﬁ }dk

E ( k) ~ k_S/ 3 The Kolmogorov spectrum is more “famous” than
the 4/5-law but (perhaps) less fundamental




F (k

), Fk) (cm’/s?)

A universal energy spectrum can be
observed almost in all turbulent flows !

Kolmogorov spectrum

Fluid flow

10%L

10°E

102

k (cm™)

107 107 10!

102

(Low frequency) Solar wind

power density

107_

10°

10° =

trace of magnetic fied spectral matrix

10°
frequency




Notes: dynamics vs. statistics

Atmospheric flow 1) Stochastic behaviour: the dynamics is

ZWWMWWWMWW MWMMWWMM unpredictable both in space and time.
3 2]
é 0O I IOIOO I 20IOO I 3OIOO I 4OIOO I SOIOO I 6OIOO I 7000 2) PredICtabIIIty iS intrOduced at d
B o4 0 g 1 statistical level (via the ergodic theorem
@ ;WMW and the properties of chaos!). The
g 11— - - - - - - measured velocity field is a stochastic
i 4000 4100 4200 4300 4400 4500 4600 4700 . . . ..
£ 44— ' ' ' ' ' ' field with gaussian statistics.
: ZEWWWWWW
14— . . . . . . 3) On every scale details of the plots are
400 4040 40 4O 405000 Gigcorent bt statistical properties seems
Time (Sec) to be the same (apparent self-similarity).
While the details of turbulent Could turbulence be described by classical
motions are extremely sensitive | thermodynamics ? ABSOLUTELY NO!
to triggering disturbances, Turbulence is close to an equilibrium system as a
statistical properties are not waterfall to a calm water in a lake.
(otherwise there would be little | Thermodynamic theory would predict that a
significance in the averages!) normal turbulent system is many million degrees
hot. Absurd.




Since turbulence must be non gaussian the 2-th order moment CANNOT plays
any privileged role. We must calculate the whole set of higher-order moments

Let x a stochastic variable distributed according to a Probability Density
Function (pdf) p(x), the n-th order moment is

o0 o0

<X”> — Jx”dP(X) = Jx”p(x)dx 0(k) = Teihp(x)dx _ <€ikx>

—0o0

Through the inverse transform the pdf can be written in terms of moments,
and moments can be obtained through the knowledge of pdf

1 7 (k) N\ _ . d O(k)
p(x)z;:[odke ;;(Zn')<x > <x >—

k=0

dk”
Gaussian process: the 2-th order moment suffices to fully determine pdf. High-
order moments are uniquely defined from the 2-th order

Kolmogorov conjecture: a linear < p> _ p/3pl3
scaling law for high-order moments Auf o Cpg £




scaling exponents

Sp(T) = ([u(t +7) —u(t)]") ~ Tn

Despite the Yaglom-law and a 5/3-spectrum are
observed, experiments show a strong departure from
the Kolmogorov’s conjecture for high-order moments

1) u along the main flow;
2) Taylor hypothesis to
transform length scales in

s REREERREERE RN time scales

Wind-Tunnel data = all
20 ,--/J'fr
r f,,;:’-f*’! P The departure has
| P s been attributed to
10- f 2 i INTERMITTENCY

P in fully developed

1 3 —8— Velocity i turbulence

r_,/ & — Temperatura (passive) | |

o0 1 2 3 4 S5 6 T 8 9

P

Fluid flows: Intermittency, measured as the distance from
the Kolmogorov’s linear law, is stronger for passive scalar




Sp(T) = ([u(t +7) —u(t)]") ~ 76

&

210 4
18 <

The same behaviour in the Solar Wind

turbulence

1) u along the sun-earth
— (longitudinal) direction;

. n ) 2) Taylor hypothesis to

—®— magnetic fast transform length scales in

—ir— velooty

time scales

Eolmagoroy law: n/3

Solar wind: Intermittency is
stronger for magnetic field
than for velocity field.
Scaling laws for velocity
field in the solar wind

coincide with that observed
A in fluid flows

THIS CANNOT IMPLIES THAT THE MAGNETIC
FIELD IS A "PASSIVE VECTOR”




Statistics cannot prove
anything, just disprove!

Fast Wind at 0.9 AU
2 T

| vector displacement |

A very interesting
example of the fact that: ) .
even if some '
STATISTICAL features
of two phenomena are
the same, the

DYNAMICAL role played 1
by quantities involved

can be completely 0 . , : .
5:3_3[}/ /

5B |/<B|>
|

different. 50 .84

Strong jumps of magnetic orientation are responsible for
the strong intermittency: statistically similar to passive
scalars (but dynamically different!)



Magnetic turbulence in laboratory plasma

0.0

1.5

scaling exponents

— &=pB
—&-- rfa =096
--8r-- rfa=0.93
& prfp =0.90
........ # pfa = (.86

r/a — normalized distance

The departure
from the linear
scale increases
going towards the
wall

{

Turbulence more
intermittent near
the external wall

Similar to edge
turbulence in
laboratory fluid flows



What is “intermittent” in turbulence

Velocity and magnetic differences at three different separation times

T=11min

Au, WWMNWM

ol

b

320

322 32 A4 :2 6 32 8 33.
DoY 1976 - Helios 2 data

T=31=ec l
T=11min
7 bl

32.0 32.2 324 32.6 32.8 330
DoY 1976 - Helios 2 data

1) A random signal at large separations;
2) Bursts of activity at smaller separations



A modified similarity hypothesis

- Landau noted that there are no physical reasons for
the energy dissipation rate to be a constant.

- Kraichnan noted that, looking for scaling laws within
the inertial range, we have to look at the (fluctuating)
energy transfer rate at a given scale.

<(Auz)p> ~ <(5z )p/3>€p/3 ~ (7

The scaling exponents of the fields depend on the
scalings of fluctuations of the energy transfer rate

<(5 )M> ~ (% A “Pandora’s box” of possible
f models for the energy transfer
—p/3+7 rate. Each model gives different
S, =P P/3 " lintermittent correction




The p-model

=

Different fractions (u and
1-u) of energy (0.5 << 1)
are transferred, in a
conservative way, from the
mother eddy to the two
daughter eddies.

The fraction p is constant
at each step, and the "side
(left or right) is chosen at
random

n

A general
fragmentation
process |




The energy transfer rate in the p-model

A 1D simulation with u = 0.75

Probaailil e mzasura

PI=075
1
I R The density of energy transfer rate
1 1lrll Z.-'[r]I Z-Illl #Irll H1I! H:“ .-'I|[] I-I1Iil '.l!lll gl i becomes SINGULAR as the
nsf ] n cascade proceeds to small scales.
TS w6 w6 &0 &n B0 7w Ao &6 o _ _
o Small scales show singular regions
AT | ] 5 1 | with high activity and more quiet
“2 0 20 X0 &0 &0 A0 70 a0 &0 10m regions.
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Comparison with velocity in fluid flows

A binomial process =2 /3 /3
analytical expression for gp =1- 10g2 [,Ll + (1 — ,Ll) ]

the scaling exponents

The free parameter can be used to
normalized scaling exponents “tune” the intermittency strength.
R L A AR T T Best fit on the data u = 0.7
: Note: unfortunately the curve is
smooth enough! Different models
gives acceptable results.

A collection of data from
laboratory fluid flows (black
symbols) and solar

wind velocity (white symbols).

Not fully  ;

Differences only for unreliable

& reliable | i high order moments, due to
ol bt different geometry of dissipative
0 5 10 15 20 25 structures (see later)
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A different signature of intermittency:
PDFs of fluctuations depend on the scale

10"

g

Lot

135 ol

cﬂﬂ T=2h C'D

Standardized variables

2 at different scales

Self-similarity: the pdfs of normalized fields
increments at different scales collapse on the
same shape

pdf(0B,,) = pdf (oB,)

Real turbulence: The dependence of the PDFs
of standardized variables from the scale, means

that the phenomenon of turbulence CANNOT be
considered as being globally self-similar.



A model for PDF scaling

The departure from self-similarity can be described through a multifractal model
that represents the scaling evolution of PDFs

Convolution of gaussians G with different standard deviations o, according
to a distribution L(o)

P (Ay) = I L(o) G(Ay,o) do

For example a log-normal ansatz

_ In’(c/o _
L(o) = \/%l exp — ;é Oj

'\_

the sum of gaussians of different width o Width (variance) of the Log-normal
(blue) yields the “stretched” PDF (red) distribution




The model describes scaling evolution of pdfs

Solar Wind REX Shell Model 2D-MHD

P(5b)

P({b)

P(5b)

ob ob ob ob



The parameter A? can be used to characterize the scaling of
the shape of the PDFs, that is the intermittency of the field!

The parameter A2 is found to behave
as a power-law of the scale

To characterize intermittency, only two
parameters are needed, namely:

> L %max, the maximum value of the parameter
A2 within its scaling range, represents the
strength of intermittency

(the intermittency level at the bottom of the
energy cascade)

> B, the 'slope’ of the power-law, representing
the efficiency of the non-linear cascade

(measures how fast energy is concentrated on
structures at smaller and smaller scales)

() =r”

1.0 i
":_: V

Al(r)

0.l

1 o
L



Turbulence: “structures” + background ?

A description of turbulence (since Leonardo!): “coherent” structures
present on ALL dynamically interesting scales within a sea of a
gaussian background. They contain most of the energy of the flow
and play an important dynamical role.



Orthogonal Wavelets decomposition

Let us consider a signal f(x) made by N = 2™ samples, and
build up a set of functions starting from a “mother” wavelet

y(x)

Scale Posmon

J(x)= ZZ W, (x)

J=—00[=—00

w, = [ £ Cow, (v

Then we generates from this a
set of analysing wavelets by
DILATIONS and TRANSLATIONS

/

. x—1i2’
WZ_J_(X):zj/ZW( - j

2]
Wy~ f(x+r)= f(x)
/o] dx =

ij



Local Intermittency Measure

The energy content, at each scale, is not uniformly distributed in space

L.i.m. greater than a threshold
lim. = means that at a given scale and
R < 2> position the energy content is greater
l

than the average at that scale

l.i.m. smaller k li.m. larger
than threshold E than threshold

Complete signal 1

BhF— bbby

Gaussian background Structures



In the solar wind

UL L L L L L e
— Original The sequence
o —UMed T of intermittent
events generates
a point process.

(@)
o
o
|
]

] Statistical

residuals properties of the
500 - n process gives
information

on the underlying
400 | beginning of intermittent event - physics which

T N TR T T R C i AT | generated the

I S S ST S I T ST ST AR T T R ST R N B S A BT U RS S S B .

49:12 50:00 50:12 51:00 51:12 2:00 52:12 point process.
DoY 1976

Solar Wind Speed [km/sec]




Y (degrees)  Magnetic field ()

Civ, B]

structure allows to identify them.

What kind of structures in MHD (1)

Minimum variance analysis around isolated

120,158

1200162
Trme {days)

e

120, 166

Tangential discontinuity (current sheet)
are spontaneously generated at all
scales inside MHD turbulence by the
nonlinear dynamics.

The component of the magnetic field
which varies most changes sign, and
this component is perpendicular to
the average magnetic field (the
magnetic field component along the
third axis being almost zero). The
magnetic field rotates in a plane by
an angle of about 120° -130°



Minimum variance analysis around isolated

What kind of structures in MHD (2)

structure allows to identify them

Compress. Fluctust.

Welocity Fluchsat,

o

L {
T & il — =

- . i
T2, TRA
Tiime {days)

32479

Compressive discontinuities are
sometimes observed. These
structures can be either parallel
shocks or slow-mode (like)
wave trains.



Magnetic structures in laboratory plasmas

Edge magnetic e o R b o e
turbulence in RFX: ol TRl e gl

* = « B |
current sheets :

T

Current sheets are

naturally produced as e ¢l e
“coherent”, gL 57771 i e
Bo04- 1 =541T s &8, | pa =2y i,

intermittent e I e e
structures by o b
nonlinear interactions al N e

Bfagmes o fickd Tucouation
b & -]

L

1

(-

m

=

[

=



Dynamics of intermittent structures

Relationship between intermittent structures of edge
turbulence and disruptions of the plasma columns at the

Minima are related
to disruptions of the
magnetic structure
(at the center)

center of RFX
r/a =087 v =10 us
100f= =3 B 3 = TE =
10058 -
_ :
- =200 .
T ]
=300
400 = % :
ol _ " E i g SR, g E L .
14 18 18 an

t[ms]

Yet we don't have explanation for this!

Appearance of
intermittent

structures in the
electrostatic
turbulence at the edge
of the plasma column
(vertical lines)




Playing with point processess!

The times between events

E S | (waiting times) are
S o ' f22 distributed according to a
Dd° T=0.07h %rb i
?o f——t Lo b‘ power IaW
S q;{
£ g -
SR I T Pf(At) ~ At 8
T=0h g ™ i
ful e D‘q
bt } L0 N
s b The turbulent energy
£ ol \ cascade generates
& h ® » intermittent “coherent”
o I“ibl 1 : ; ; :
Lo d wo———— o events at all scales.
4B At
Solar wind

Interesting! the underlying cascade process is NOT POISSONIAN
(we found no exponential pdfs), that is the intermittent (more
energetic) bursts are NOT INDEPENDENT (memory)



Power law distribution for waiting times

Fluid flow Laboratory plasma

W 10" : T ; 10 ® 1g¥
F ] Py
s £ 1 a 2 107 P N N
=) & E,
L £ % : o] % £=1.63 ol U S R -1l
N A S i 2 oof, T
&£ : T 0\0 & T = 2.0 ps bz
107 S . Lot 'x e 1mn°
i ] , -28|
- 1 Y = 107} T owte
& 10 {1 Et R 1 A LU S % 1 &
0 F f E = & =
= 1 g | £y T i O R 1|
£ ‘@% 5 10
Lo 4 Lok h e in?
] g SR
] B ~ 1071
i: g \-, E 10_4 L
i 10 é’ @ 1 Lok o, - = 102k
2 / B D o o
o T=50s 0% r - 2000 s 3 g
].U‘ LB . . . . : Lo.s : E 3 10_4 L L L L L 10 Ll ol Lo
- 2 o 2 4 Lot 1o° o' Lo* -8 -4 -2 0 2 4 B8 109 1t 10° 108
du At &H At

(Perhaps) all turbulent flows share this characteristic.
Power laws must be reproduced by models for turbulence.



3th question

Where the turbulence of water
comes to rest (?)




Dissipation of energy in classical turbulence

When the dissipative time becomes of the order of the nonlinear eddy turnover
time, the energy cannot be transferred efficiently. The process becomes
dissipative and energy is dissipated.

ou(k.t)

Optt; + o Oou; = —O0; P + v02u, :> ot

u(k.t) ~ exp(—vk?t)

~ —vk*u(k. t)

Dissipation length

Since R=106% for the swimmer

Uy _
Ty ~TH R”:—uf ~ 1
1/ i

n =~ 3x10"%mm

3\ /4 1 pe3/a Lp 30n

|2

We cannot observe structures on
scales lesser than 1 mm




Dissipation through isolated bursts:
finite-time singularities

Dissipative structures are very localized both in
space and time (intermittency in the dissipative
domain). Energy is dissipated through
isolated bursts.

This process can be viewed as a generation of

finite-time singularities:

Eddy-turnover time: lifetime of eddies

¢ —1/342/3

. . . T ~ - ~F e
Numerical simulation : g The sum of eddy-turnover
1P z (2/3 times CONVERGES as the
o r scale length tends to zero.

The energy is transferred towards structures of ZERO length in a
FINITE time, this generates singularities in the dissipative domain.




What happens in real plasma turbulence?

Example of Solar flares: impulsive annihilation of magnetic energy
at spontaneously generated current sheets in a turbulence inside

the solar corona (?)
(Boffetta, Carbone, Giuliani, Veltri, Vulpiani, Phys. Rev. Lett. 1999)

Time series of flare events

Hard X-ray ( > 20 keV): | LILIN I L L S PR R L
Intermittent spikes, duration 1-2 s,

~ 27 .
Ernax ~ 107 erg Parker’s X-ray corona: superposition of a very

Numerous smaller spikes down to
10%* erg (detection limit) large number of flares (NANOFLARES)



Power law statistics of bursts

100000 F

1,0000

01000 F

1618 avents

iy
& E : el
= E Flat part: Slepe —1.15 +/— 004 3
E F Steep part: Slope —2.23 +/— 0.08
w 0.0100F
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Flare Frequency

L 1
102 109 10+

L 1
107 108 10

Tatal Counta
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Total energy, separation times, peak energy and

(more or less!) lifetime of individual bursts seems
to be distributed according to power laws.

(L1} | ) 1
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Geometry of dissipative bursts

Intermittent dissipative structures:
Filaments in usual fluid flows, sheets in MHD flows

- - =
- : — e R o l""!,‘:i'j =
s i r— e 7 ?
: “— - i . -
i =
g -:-"'7-"-'; b ""'" o
" g "0 T 1
Wty 2
S -
- A A i ¥ -
- A - I -|.-'II
1 L g
ey o -

Dissipative structures near the wall

Current sheet



Current sheets have been observed in
space plasmas (Cluster spacecrafts)

Electron-scale

Large-scale

Current sheets are very
Interesting, because they
are the place for the
occurrence of a lot of
physical processes:
magnetic reconnection,
particle acceleration,
bursty magnetic energy
annihilation, etc.



While large-scales in solar wind can be
described (more or less) within a fluid
approach, dissipation is much more
(perhaps completely) different.

Mean-free-path > XA =10"3cm
(3 times Sun-Earth distance)

=) Spacecrafts observe a collisionless fluid !

The “dissipative” range of turbulence in solar wind
should be similar to quantum turbulence
(nonviscous superfluid phase of 3He).



Superfluid turbulence

Energy in

040

rchardon (J OO0

cascade
a/alolalaeleaa)
slalslnlolalelelrialale]
| I,~.I I_'.. 'H'.-I ll',I
. ; ¥ ¥

Kelvin-wave

cascode

?hnnm&
out

Moy} ADsaug

@ Energy enters, creating vortices
on large scales.

@ Reconnections = flow of energy
to smaller scales.

@ Cascade cannot end in viscous
dissipation!

@ |nstead, cascade of Kelvin waves
to higher K.

@ Eventually, direct phonon
generation.



Do we observe a “dissipative range” in
the solar wind turbulence?

I | | N

102 |

10° |-

1072 |

PSD [nT?/Kz]

In-# =

1073 1072 107" 10° 10
Spacecraft-Frame Frequency [Hz]

spectra ~ 2 power
laws: in origin
attributed to “Inertial
range” & “Dissipation
range”

break in the
vicinity of the proton
cyclotron frequency

on average f>/3 in
the low-frequency
range

on average f7/3 in
the high-frequency
range



Energy power spectrum in superfluid turbulence

* log By, (k)

_IDg CEZI’Bk—if’S
(C~0.55)

— N W s N ] OO

-1 -05 0 05 1 15 2
log k



Why investigating turbulence?
Increasing transport coefficients

Brownian diffusion Turbulent diffusion

R ~ \/; Average distance

of pairs

1) Cuba-libre: few h
2) Heating a normal room: 347 h



Il trascinamento (drag) dovuto alla turbolenza ha un impatto terribilmente
negativo per esempio nel moto delle automobili o nel trasporto di fluidi nelle
condutture (petrolio, olio combustibile, etc..)

Parametri tipici dell'oggetto:
Potenza: P = 45 kW
Dimensioni: L=2m

Velocita che dovrebbe avere
auto SENZA turbolenza

Forza di Stokes agente: f = 6rolLV
Potenza dissipata: P = fV

P

670L

V= = 25000 km/h

In condizioni stazionarie

Parametri tipici del fluido:
Densita: p = 1.2 kg/m3
Viscosita: v =2 x 10° Pa s

Velocita che 'auto ha per il fatto che
esiste il drag turbolento

Tempo di generazione del vortice: t = L/V
Energia del vortice: E = 72 p L3 V2
Potenza dissipata dalla turbolenza: P = E/t

V=3 2—P2:95km/h
\/pL

Nota: non dipende dalla viscosita !




Drag reduction: turbulence is investigated
also for practical purposes




Modeling turbulence




All features are (more or less) reproduced by
numerical simulations.
Why models for turbulence?

In the limit of high R, assuming a
Kolmogorov spectrum E(k) ~ k-/3
dissipation takes place at scale:

ID ~ LR—3/4

the # of equations to be solved is
proportional to

N~(L/l,)~R"

For space plasmas: R ~ 108 - 101>

Typical values at present reached by
high resolution direct simulations

R~ 103 -10°

Input

’
.-’ ..’ @ Transfer

— Output

—

At these values it is not possible to
have an inertial range extended for
more than one decade. No possibility
to verify asymptotic scaling laws,
statistics...




How to build up shell models (1):
Introduce a logarithmic spacing of wave
vectors space (shells)

k =k
n=12,.,N

The intershell ratio in general
is set equal to A = 2.

In this way we can investigate properties
of turbulence at very high Reynolds
numbers.

We are not interested in the dynamics of
each wave vector mode of Fourier
expansion, rather in the gross properties
of dynamics at small scales.



How to build up shell models (2):
Assign to each shell ONLY one (in fluids)
or two (in MHD) dynamical variables;

In this way we ruled out the possibility
* to investigate BOTH spatial and temporal
— -+ g P p
z n (t) un (t) — bn (t) properties of turbulence. We loose
geometrical effects due to different
orientation of wave vectors

These variables take into Shell variables at a given scale play the
account the averaged mmmp> | le of increments at a given separation
effects of velocity

modes between k, and ﬂ

K.y, that is fluctuations

across eddies at u, () > u(x+/0,)—u(x)

the scale |, ~ k!

<u5> — <[u(x+ 0) —u(x)]p>



How to build up shell models (3):
Write a nonlinear model with quadratic couplings and fix as
more as possible the coupling coefficients

oz (k, . _ . i
%tt) =M, (k)Y z5(p,0)z, (k—p,t) + vk’z; (k,0) + [ (k, 1) | |
’ MHD equations in
M“ﬁV(k) - _ikﬁ(éay _%] Fourier space
dz t
( ) _lk ZMI_] n+z(t)Zn+ (t)+UkzZ+(t)+f_
dt i,j=12,%1

Interactions between nearest and next nearest shells

Invariants of the dynamics
in absence of dissipation and  E(¢) = J' [u2 n bz]dx

forcing: ( *)d
H (t)=|\u-bpx _ 2
1) total energy J‘* L H(t) - j|A| dx
2) cross-helicity H(t)= _HA -V % A]dx
3) magnetic helicity 2D

3D



GQOY shell model

du . o 1-6
dtn = lkn |:(un+1un+2 o bn+1bn+2 ) o 5 (un—lun+1 o bn—lbn+1)_ T (un—Zun—l o bn—an—l ):|
db, . o 1-0
dtn = lkn |:(1 o 5 - 5m)(un+lbn+2 - bn+1un+2 ) + 7’% (un—lbn+1 - bn—lun+1)+ — (un—an—l o Z/ln—an—l ):|
E— Z u, o b, 2 The model conserves also a “surrogate” of
Conserved n magnetic helicity
uantities . — .
a H =2Re Z” b There is the possibility to introduce
‘ il “2D" and “3D"” shell models.
2
b, b7
H=2 H=Y (1"
o=5/4;, o,6=-1/3 5=1/2; &,=1/3

H positive definite: 2D case H non positive definite: 3D case



= |u,|]=

Spectral properties of the 3D model:

Numerical simulations with: N = 26 shells; viscosity = 0.5 - 102

We use a Langevin equation for the external forcing term ﬁ B i e
acting only on the velocity field, with a correlation time 1 dr B . (1)
(eddy-turnover time)
OVCHERIED
10 lig
-l"k....._,.‘
“"‘H-"_
.“.ﬁ“s‘s.‘n e '__'"-T‘:E-.h
0= .. i 107 =
= 2\ o 1.~2/3
3 | (u))~ E(k,)k, ~,
107~ 10"
! I | “ T 1 4
w w1 w 1’ 10 w 1w
k,

Kolmogorov spectrum is a fixed point of the system.
Inertial and dissipative ranges + intermediate range well visible in shell models



Properties of 2D and 3D model:
dynamo and anti-dynamo action

Time evolution of magnetic energy

''''''

log,, < poJ* =, log, < [b.] >

I I |
z 3 4 5 [ T g

169, K.

-30 /._

0

The 2D model shows a kind of
“anti-dynamo” action:

a seed of magnetic field cannot
increase.

Starting from a seed, the magnetic
energy increases towards a kind of
equipartition with kinetic energy.



An exact relation for shell model

107 —

-lﬂ-lll

< (T2 2>

10"

10

10"

10’

10°

The analogous of the
Yaglom law within the

shell model

(r:0)=-3ek,

I

The 3D shell model reproduces
the energy cascade of turbulence

a) The negative sign means that an energy cascade exists;
b) Non-gaussian features of fluctuations



Time intermittency

Time evolution of shell variables at three different shells.

lll]lw-lll'ﬁ,wﬁ l,u'r l"'-" ﬂu\uﬂl n=5i
i U'*H mm/\’xmm AN

j\ﬂav/ A\‘V\ fﬂm W

51 } Ly

—P 1 .nr I| /-h/x“”m i “xf‘uﬂtft\
W Jﬁ'lf“awﬂ'f-"-wnlmm R

WW vy v W &

ﬂvlw w

|
33 40 43 30 35 60 65 7D

4] 5 [E4] 1% 2y 25 -4 T T | B 1 2 5% Bk KA 70

Time

0 3 ln 15 zu 5 30
Time

Fields at n = 5 look more like gaussians, fields at n = 14 are made by pulses

- time intermittency (yet poorly understood)

A shell model possess pulse
solution of width O(k 1)

u, () =k,"Fli " (1 =r)]

Time intermittency related to nonlinear dynamics



Scaling of moments of shell fields

a\ _ 7-¢ Scaling exponents obtained
<[Re(un )] > ~ kn ' in the range where the flux
scales as k!

2.5 e e LA E |
SIS ,/: | A departure from the

w 0 i A& 1  Kolmogorov law must be
€ / 1 attributed to the “time
g 15 . 1 intermittency” in the shell
;3_ / model.
O 10 i
o))
=
g 05 —®— Magnetic ]
b —@— Velocity |1 The departure from the

00 Kolmogorov law measures the

' o 2 4 6 8 “amount” of intermittency
q q

Fields play the same role &> the same “amount” of intermittency



Waiting times in the MHD shell model

o " Time intermittency
o T e in the shell model
107 et L=2"L g, 107 o L=2"L Eoon .
" . W e is able to capture
§ e 1B T e also that property
”:r_.“* UL o ﬁ"; ¢ L T of real turbulence
: ﬁ,n*:"’“"vn,cnn : ,-:-:m”'-"':.,
10" 2 e=2'L :'c,u 1o fﬂ; L=2'L 2
=4 =2 1] i ; 4 -1 . =2 L1 2 4 @
B, dh,
I — r ™ I — oy T T : :
i %\ I N peis Chaotic dynamics
| =
: . (B '“‘"m_% generates non
o ., poissonian events
[ i 10 -
w' ot ot oWt e w ot w1t 1w

At {arbitrary anits) AL {arbitrary units)



Dissipative bursts in shell model

2

et)=vy klfu,| +n> kb,
The energy -
dissipation rate is
intermittent in 2.0
time.
Energy is ]
dissipated 1)
through impulsive
isolated events
(bursts).

Time (*10%)



Inside bursts

Through a threshold process we can identify and
isolate each dissipative bursts to make statistics

MHD SHELL MODEL

g.030[ T~ T T 1

0.025}

0.020 F -

> 001sf
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0.010F ; 1

oL el

0 2000 4000 BO00 2000 10050
Time




Some statistics

Let us define some statistics on impulsive events

1) Total energy of
—
bursts P{vhah
2) Time duration = e g
G . AP e "
3) Energy of peak = - N e
o PITaY - L
ﬁ H""‘-q__.l__ ,t?"ﬂ'“h L L e
:5 ) .H"h,_-.hh 1‘1 ) ]B
In all cases we 2 107 DN
found power laws, = L~
the scaling exponents h
depend on threshold. 0 i |
0.1 1.0 10.0 100



The waliting times

The time between
two bursts is t, and 10°—
let us calculate the

pdf p(t). 107

WE FOUND A
POWER LAW

Even dissipative Ufl ‘' m'_c.
bursts are NOT
INDEPENDENT



Un’ultima
cosa prima di
lasciare
Leonardo da
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L ’'osservazione della
realta e solo una
guestione di “tecnica”?

i

E’ stupefacente come Leonardo riesce a riprodurre la
realta osservata. E’ solo bravura “tecnica” o osservava la
realta in modo differente da come possiamo farlo noi?




Ricerca scientifica:
stupore e desiderio.

La ricerca scientifica parte dallo stupore per tutto cio che esiste, e lo stupore
diventa desiderio di vedere di piu, di scrutare, di osservare nei particolari. E
I‘osservazione di cose nuove non fa che accrescere lo stupore dell’inizio.

Lasciamo raccontare questa dinamica da Leonardo stesso

“E tirato dalla mia bramosa voglia, vago di vedere la gran copia delle varie e
strane forme fatte dalla artifiziosa natura, raggiratomi alquanto infra gli
ombrosi scogli, pervenni all’entrata di una gran caverna, dinanzi alla quale
restato alquanto stupefatto e ignorante di tal cosa [...] e spesso piegandomi
in qua e in la per vedere se dentro vi discernessi alcuna cosa; e questo
vietatomi per la grande oscurita che la dentro era. E stato alquanto, subito
salse in me due cose, paura e desiderio: paura per la minacciante spelonca,
desiderio per vedere se la entro fusse alcuna miracolosa cosa.”

(Leonardo Da Vinci, Scritti letterari)




. La dlnamlca desCrltta da Leonardo fa parte della natura non.
' solo dello SC|enZ|ato ma di ogni uomo pérche suscita una serie .
d| dom,éﬁde Come rlportato in modo mlrab|le da: Leopard| S

dlr questa solitudine immensa?
ihe sono? Cosi-meco mgiono-. :

Giacomo &eopardl

Canto no‘r‘rur‘no di un pasfore ermn‘re dell Asia




