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Outline

• Turbulence: observations and main questions.
• Kolmogorov theory, energy cascade, 

intermittency.
• Modeling turbulence: A dynamical system 

approach 
• I apologize, I will make an extreme confusion 

between laboratory and space turbulence!
• I promise to not mention words like “fractals”,  

“sandpiles”, etc. during this talk.



“In manibus codices, in oculis facta”
(Sentence by S. Agostino)

Although we know that 
fluid flows, and then 
turbulence, are 
described by Navier-
Stokes equation, we 
have to look first at real 
nature to watch their 
richness and beauty, 
and realize how 
dramatically difficult
is their description.



Turbulence everywhere,
A phenomenon ubiquitous in nature

flow



In general we don’t care about 
turbulence …

… apart when a nice lady asks us to keep fastened 
seat belt because some turbulence is approaching …

“Turbulence: It’s a killer ride”
(R. Liotta and L. Molly, 1977)



Turbulence 
(La turbolenza since Leonardo da Vinci). 

Yet in lack of a formal definition

From latin “turba” (τνρβη): 
confusion (of people)

An “italian” definition:

A “turbulent boy” in all Italian schools 
is a young fellow who rebels against 
ordered schemes. Following the same 
line, “turbulent” is called the behavior 
of a flow which (apparently) rebels 
against deterministic rules imposed by 
classical mechanics.

R. Bruno & V. Carbone, 
Living Rev. in Solar Phys. 

(2005)



A peculiar stochastic process: 
strange mixing of order and chaos

Main features:
1) Randomness 

both in space and 
time

2) Turbulent 
“structures”
(eddies) on all 
scales

3) Unpredictability 
and instability to 
very small 
perturbationsTurbulence is far from a sequence of 

random numbers with a well defined 
spectrum and uncorrelated phases. You 
cannot reproduce a “turbulent field” by 
putting at random sand on a table!



The velocity trace recorded in two different 
points within the flow has the same global 
“stochastic” behavior (gaussian statistics), but 
local dynamic looks to be completely different

Fluid turbulent samples

Laboratory wind tunnel

Atmospheric turbulence



The solar atmosphere extends in the interplanetary The solar atmosphere extends in the interplanetary 
space, thus generating a turbulent flow: space, thus generating a turbulent flow: 

THE SOLAR WINDTHE SOLAR WIND

Turbulence in space is rather complicated, 
because the fluid motion generates 
currents and magnetic fields that interact 
with the fluid flow. This is the Magneto-
Hydro-Dynamic (MHD) turbulence. 

In 1957 the first spacecrafts 
flying  in space measured 
turbulent fluctuations.  The 
solar wind is a rather peculiar 
turbulent flow because it is 
essentially made by charged 
particles, say mainly protons 
and electrons (PLAMA).

50 years later the first 
space flights, in 2007 we 
celebrated the International 
Heliophysics Year.



The solar wind as a wind tunnel

In situ measurements of 
high amplitude 
fluctuations for all fields 
(velocity, magnetic, 
temperature…)
A unique possibility to 
measure low-frequency 
turbulence in plasmas 
over a wide range of 
scales.

For a review:
R. Bruno & V. Carbone, Living Review in Solar Physics, (2005)
http://www.livingreview.org

An updated version will be available (hopefully) on March 2008



Turbulence in plasmas: laboratory 
experiments

Plasma generated for nuclear fusion, 
confined in a reversed field pinch 
configuration. High amplitude 
fluctuations of magnetic field, 
measurements (time series) at the 
edge of plasma column, where the 
toroidal field changes sign.

Magnetic and 
electrostatic 
turbulence data 
from RFX (Padua) 
Italy



Osborne Reynolds noted that the dynamics is determined ONLY by a
combination of characteristic parameters. As R increases the system 
becomes turbulent. Reynolds number is the control parameter

ν
ULR =

υ kinematic viscosity 
U large-scale characteristic fluid velocity 
L characteristic length

Osborne Reynolds: 
quantitative experiments



Flow past an obstacle becomes 
turbulent

Laboratory Atmosphere Astrophysical fluid flows

U
L



Turbulence is a 
characteristic of the FLOW 

and is described by 
Navier-Stokes equation

Nonlinear Dissipative

Incompressible 
Navier-Stokes equation
u → velocity field
P → pressure
ν → kinematic viscosity

Turbulence is the result of nonlinear dynamics 
(fluid flow) of Navier-Stokes equations.



1) Where the turbulence of water is generated
2) Where the turbulence of water maintains for long
3) Where the turbulence of water comes to rest

Three main questions from Leonardo
(Codice Atlantico)

doue laturbolenza dellacqua sigenera
doue la turbolenza dellacqa simantiene plugho
doue laturbolenza dellacqua siposa

After mirror reflection

?

Three main questions



The exact solution worth $1M

In the following, some (rough!) answers for free!



Where the turbulence of water 
is generated (?)

1th question



For example from Kelvin-Helmotz 
instability

Instability at the interface of two streams of fluid 
that move with different velocities

Real experiment

Numerical simulation



Turbulence and deterministic rules
Equations that describes turbulence are time invariant, they 
describe deterministic phenomena.

Laplace:

The knowledge, at a given instant of time, of ALL forces in nature and the 
situation of ALL particles, yields a complete predictability of dynamics.

Poincaré:

Even if we can describe ALL forces in nature, the situation of all particles 
at a time are know only APPROXIMATELY. Very small differences in the 
initial conditions should give rise to big errors at future times. Predictability 
is (practically) impossible.

Turbulence seems to violate the deterministic law of Laplace, even if 
equations are deterministic. It seems to be described in the framework of 
Poincarè phenomena. Very small perturbations yields unpredictability.



Turbulence: the main phenomenon 
of deterministic chaos

Some nonlinear phenomena are 
described by deterministic equations 
that are extremely sensitive to initial 
conditions. 

Turbulence born because 
equations are nonlinear and 
extremely sensitive to initial 
conditions

DETERMINISTIC CHAOS 
(contradiction in terms!) = extreme 
sensitivity from initial conditions.
Consequence unpredictability

In non chaotic systems unpredictability is 
limited to some very peculiar initial 
conditions (unstable fixed point). The point 
needs an aid from a small fluctuations. 
Once the point decides the side, we can 
predict the future (left or right).

?



Chaos unpredictability
In chaotic systems unpredictability is intrinsic to the system, that is the 
system is “unstable” for almost all initial conditions. In chaotic systems 
the distance between two nearby trajectories diverges exponentially: 
example the Lorentz billiard.  

D(t) = D(0) + At D(t) = D(0) eλt

Predictable Unpredictable



Two competing models for the onset of turbulence: 
Landau vs. Ruelle & Takens

2) Ruelle & Takens:
incommensurable frequencies cannot 
coexist, the motion becomes rapidly 
aperiodic and  turbulence suddenly will 
appear, just after three (or four) 
bifurcations.

The system lies on a subspace of the phase 
space: a “strange attractor”.

1) Landau:
turbulence appears at the end of an infinite serie of Hopf 
bifurcations to quasi-periodic motion as R increases, each 
adding an incommensurable frequency to the flow

The more frequencies 
The more stochasticity Chaos is absent

Chaos is present



Accurate experiments on turbulence 
(not engineering but physicists!)

After the appearance of two 
incommensurable 
frequencies, the spectrum 
becomes broad abruptly

This very basic observation disagree with the 
Landau picture and seems to be in 
agreement with the idea by Ruelle & Takens.

But an example of “strange attractor” ?

Gollub & Swinney, Phys. Rev. Lett., 1975



E.N. Lorenz, 1963 
Edward Lorenz in 1963 derived a Galerkin approximation with only three modes 

to get a simplified model of convective rolls in the atmosphere (2D). 

r is the ratio between the 
Raylaigh number and the 
critical one for convection 
(r > 1 implies convection);

b is a geometric factor 
(aspect ratio);

σ is the Prandtl number 
(ratio between kinematic 
viscosity and thermal 
diffusivity)

Retains only three modes in 
a Fourier expansion



An example of “strange attractor”
The trajectories of the system, for certain settings, never settle down to a fixed 
point, never approach a stable limit cycle, yet never diverge to infinity. The 
phase space is contracting to a set of dimension zero (dissipative system!),…
trajectories are “condemned” to wonder forever within the contracting finite 
portion of the phase space without intersections (deterministic system).



Strangeness: 
Extreme sensitivity to initial conditions

5000 trajectories from 
different initial conditions. 
The initial conditions are 
confined in a square of 
amplitude 10-5



Chaotic dynamics from Navier-Stokes equations: 
nonlinear evolution 1D map (discrete times)
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Sensitivity to initial conditions ?
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Why chaos is “interesting”? 
Chaotic dynamic leads to stochasticity
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Ergodic theorem:Ergodic theorem: Let f(x) an integrable function, and let 
f(Tn(x0)) calculated over all iterates of the map. Then for 
almost all x0

As a consequence of the chaoticity, the trajectory of a 
SINGLE orbit covers ALL the allowed phase space
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is generated by the 
chaotic dynamics, 
from the uniform 
measure in [0,1].



Turbulence and unpredictability in the 
atmosphere: the “butterfly” effect and 

weather forecasting

“ Lontana previsione a 
lungo dura, vicina 
prevision meno sicura”

Detto popolareWeather forecasting for long times?

Per colpa di un chiodo si perse lo zoccolo
per colpa di uno zoccolo si perse il cavallo
per colpa del cavallo si perse il cavaliere
per colpa di un cavaliere si perse il messaggio
per colpa di un messaggio si perse la battaglia
per colpa di una battaglia si perse il regno

G. Herbert



Where the turbulence of water 
maintains for long (?)

2th question



From Navier-Stokes equations we 
can find two characteristic times for 
the two basic processes: a 
convective (eddy-turnover) time and 
a diffusive (dissipative) time

Where the problem comes fromWhere the problem comes from

Their ratio, at the largest scale L, 
is the Reynolds number

At the largest scale L the energy 
injection rate (per unit mass) turns out 
to be R times greater than the energy 
dissipation rate

The turbulent system cannot dissipate the 
whole energy injected at the largest scale L, 
just a fraction of it. How the system can 
dissipate the excess energy ?



Example: the swimmerExample: the swimmer
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The swimmer puts 1 Watt/Kg in the system, and 
reaches a Reynolds number of the order of 106. The 
swimmer must produce turbulence

R = 106



The dissipation is effective only at 
very small scales: the system 

dissipates energy simply through a 
transfer of energy to small scales 

(eddies distortion) 
energy cascade

The Richardson’s phenomenology: 
breaks down of eddies at large scales 
and transfer of energy to small scales.

Injection of energy

Dissipation of energy

Turbulence: how fluid flows at high Reynolds 
number can dissipate energy !!!!



Fourier analysis of equations
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The evolution of the field for a single wave vector is related to fields 
of ALL other wave vectors (convolution term) for which k = p + q. 

Infinite number of modes involved for inviscid flows

In the ideal case, the nonlinear 
term conserves global energy

The nonlinear term is responsible 
for a redistribution of energy over 
the whole set of wave vectors.



Richardson phenomenology in 
k-space

• Three ranges of scale (lengthscale = 1/k): 
energy containing, inertial (cascade), 
dissipative



An exact law from Navier-Stokes equations
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Under the conditions of homogeneity and isotropy, in the stationary state 
a Yaglom’s relation can be derived from Navier-Stokes equation:

In the inertial range
(a FORMAL definition 
of inertial range!)

4/5-Kolmogorov law

a) The negative sign IS CRUCIAL!!! (irreversibility) energy cascade
b) The third-order moment of fluctuations is related to the energy dissipation 

rate and is different from zero turbulence MUST shows some 
nongaussian features, at least within a certain range of scales

Two-points differences along the LONGITUDINAL 
direction (stationary stochastc variables)

l

Differences of the streamwise component of velocity between two points 
along the longitudinal direction. Characteristic fluctuations across eddies 
at the scale 

< ε > averaged energy dissipation rate



The 4/5-law in action within fluid flows

Being the only exact and nontrivial relation of turbulence, the 4/5-law represents 
a cornerstone for modeling of turbulence. Any serious attempt to describe 
turbulence MUST (at least) satisfies this law. 

Sreenivasan & Dhruva (1998), atmospheric turbulence

4/5



Turbulence: the legacy of A.N. Kolmogorov (1941)
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Dynamical properties of turbulence are Dynamical properties of turbulence are 
random, but statistical properties are random, but statistical properties are 

predictable and universalpredictable and universal

When the flux is homogeneous along a hierarchy 
of vortices (similarity hypothesis) then:
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The Kolmogorov spectrum is more “famous” than 
the 4/5-law but (perhaps) less fundamental

In the inertial range
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A universal energy spectrum can be 
observed almost in all turbulent flows !

Input Transfer Output
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Notes: dynamics vs. statistics
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While the details of turbulent 
motions are extremely sensitive 
to triggering disturbances, 
statistical properties are not 
(otherwise there would be little 
significance in the averages!)

1) Stochastic behaviour: the dynamics is 
unpredictable both in space and time.

2) Predictability is introduced at a 
statistical level (via the ergodic theorem 
and the properties of chaos!). The 
measured velocity field is a stochastic 
field with gaussian statistics.

3) On every scale details of the plots are 
different but statistical properties seems 
to be the same (apparent self-similarity).

Atmospheric flow

Could turbulence be described by classical 
thermodynamics ? ABSOLUTELY NO!
Turbulence is close to an equilibrium system as a 
waterfall to a calm water in a lake.
Thermodynamic theory would predict that a 
normal turbulent system is many million degrees 
hot. Absurd.



Let x a stochastic variable distributed according to a Probability Density 
Function (pdf) p(x), the n-th order moment is
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Since turbulence must be non gaussian the 2-th order moment CANNOT plays 
any privileged role. We must calculate the whole set of higher-order moments

3/3/ pp
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p Cu ll ε=∆Kolmogorov conjecture: a linear 
scaling law for high-order moments



Despite the Yaglom-law and a 5/3-spectrum are 
observed, experiments show a strong departure from 
the Kolmogorov’s conjecture for high-order moments

The departure has 
been attributed to 
INTERMITTENCYINTERMITTENCY
in fully developed 
turbulence

1) u along the main flow; 
2) Taylor hypothesis to 

transform length scales in 
time scales

Fluid flows: Intermittency, measured as the distance from 
the Kolmogorov’s linear law, is stronger for passive scalar



The same behaviour in the Solar Wind 
turbulence

Solar wind: Intermittency is 
stronger for magnetic field 
than for velocity field. 
Scaling laws for velocity 
field in the solar wind 
coincide with that observed 
in fluid flows

1) u along the sun-earth 
(longitudinal) direction; 

2) Taylor hypothesis to 
transform length scales in 
time scales

THIS CANNOT IMPLIES THAT THE MAGNETIC 
FIELD IS A “PASSIVE VECTOR”



Statistics cannot prove 
anything, just disprove!

Strong jumps of magnetic orientation are responsible for 
the strong intermittency: statistically similar to passive 
scalars (but dynamically different!)

A very interesting 
example of the fact that: 
even if some 
STATISTICALSTATISTICAL features 
of two phenomena are 
the same, the 
DYNAMICALDYNAMICAL role played 
by quantities involved 
can be completely 
different.



Magnetic turbulence in laboratory plasma

The departure 
from the linear 
scale increases 

going towards the 
wall

Turbulence more 
intermittent near 
the external wall

r/a → normalized distance

Similar to edge 
turbulence in 
laboratory fluid flows



What is “intermittent” in turbulence

1) A random signal at large separations; 
2) Bursts of activity at smaller separations

Velocity and magnetic differences at three different separation times 



A modified similarity hypothesis
- Landau noted that there are no physical reasons for 
the energy dissipation rate to be a constant.
- Kraichnan noted that, looking for scaling laws within 
the inertial range, we have to look at the (fluctuating) 
energy transfer rate at a given scale.
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The scaling exponents of the fields depend on the 
scalings of fluctuations of the energy transfer rate
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A “Pandora’s box” of possible 
models for the energy transfer 
rate. Each model gives different 
intermittent correction



The p-model
Different fractions (µ and 
1-µ) of energy (0.5 ≤ µ < 1) 
are transferred, in a 
conservative way, from the 
mother eddy to the two 
daughter eddies. 

The fraction µ is constant 
at each step, and the “side”
(left or right) is chosen at 
random

E

(1-µ)EµE

(1-µ)2Eµ(1-µ)Eµ(1-µ)E µ2E

A general 
fragmentation
process !



The energy transfer rate in the p-model
A 1D simulation with µ = 0.75

The density of energy transfer rate 
becomes SINGULAR as the 
cascade proceeds to small scales. 

Small scales show singular regions 
with high activity and more quiet 
regions.

Atmospheric flow



Comparison with velocity in fluid flows

A collection of data from 
laboratory fluid flows (black 
symbols) and solar 
wind velocity (white symbols).

Differences only for unreliable 
high order moments, due to 
different geometry of dissipative 
structures (see later)

A binomial process 
analytical expression for 
the scaling exponents
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The free parameter can be used to 
“tune” the intermittency strength. 
Best fit on the data µ = 0.7
Note: unfortunately the curve is 
smooth enough! Different models 
gives acceptable results.



A different signature of intermittency: 
PDFs of fluctuations depend on the scale

Real turbulence:Real turbulence: The dependence of the PDFs 
of standardized variables from the scale, means 
that the phenomenon of turbulence CANNOT be 
considered as being globally self-similar.

Standardized variables 
at different scales

Self-similarity: the pdfs of normalized fields 
increments at different scales collapse on the 

same shape 

)()( rr BpdfBpdf δδ λ =



A model for PDF scaling
The departure from self-similarity can be described through a multifractal model 
that represents the scaling evolution of PDFs 

Convolution of gaussians G with different standard deviations Convolution of gaussians G with different standard deviations σσ, according , according 
to a distribution L(to a distribution L(σσ))
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(blue) yields the “stretched” PDF (red)

For example a log-normal ansatz



The model describes scaling evolution of pdfs



The parameter λ² can be used to characterize the scaling of 
the shape of the PDFs, that is the intermittency of the field!

The parameter λ² is found to behave 
as a power-law of the scale

βλ −2 ≈ rr)(

2d MHD

To characterize intermittency, only two 
parameters are needed, namely:

λ²max, the maximum value of the parameter 
λ² within its scaling range, represents the 
strength of intermittency 

(the intermittency level at the bottom of the 
energy cascade)

β, the ‘slope’ of the power-law, representing 
the efficiency of the non-linear cascade 

(measures how fast energy is concentrated on 
structures at smaller and smaller scales)



Turbulence: “structures” + background ?

A description of turbulence (since Leonardo!): “coherent” structures 
present on ALL dynamically interesting scales within a sea of a 
gaussian background. They contain most of the energy of the flow
and play an important dynamical role.



Orthogonal Wavelets decomposition
Let us consider a signal f(x) made by N = 2m samples, and 
build up a set of functions starting from a “mother” wavelet

)(xψ Then we generates from this a 
set of analysing wavelets by 
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Local Intermittency Measure
The energy content, at each scale, is not uniformly distributed in space
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L.i.m. greater than a threshold 
means that at a given scale and 
position the energy content is greater 
than the average at that scale

Gaussian background Structures

Complete signal

l.i.m. smaller 
than threshold

l.i.m. larger 
than threshold



In the solar wind
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The sequence 
of intermittent 
events generates 
a point process.

Statistical 
properties of the 
process gives 
information 
on the underlying 
physics which 
generated the 
point process. 

Point process



Tangential discontinuity (current sheet) 
are spontaneously generated at all 
scales inside MHD turbulence by the 
nonlinear dynamics. 

Minimum variance analysis around isolated 
structure allows to identify them.

What kind of structures in MHD (1)

The component of the magnetic field 
which varies most changes sign, and 
this component is perpendicular to 
the average magnetic field (the 
magnetic field component along the 
third axis being almost zero). The 
magnetic field rotates in a plane by 
an angle of about 120o -130o



Compressive discontinuities are 
sometimes observed. These 
structures can be either parallel 
shocks or slow-mode (like) 
wave trains.

Minimum variance analysis around isolated 
structure allows to identify them

What kind of structures in MHD (2)



Magnetic structures in laboratory plasmas

Edge magnetic 
turbulence in RFX:
current sheets

Current sheets are 
naturally produced as 
“coherent”, 
intermittent 
structures by 
nonlinear interactions 



Dynamics of intermittent structures
Relationship between intermittent structures of edge 

turbulence and disruptions of the plasma columns at the 
center of RFX 

Time evolution of
floating potential at edge

Minima are related 
to disruptions of the 
magnetic structure 
(at the center)

Appearance of 
intermittent 
structures in the 
electrostatic 
turbulence at the edge 
of the plasma column 
(vertical lines)Yet we don’t have explanation for this!



Playing with point processess! 

Interesting! the underlying cascade process is NOT POISSONIAN 
(we found no exponential pdfs), that is the intermittent (more 
energetic) bursts are NOT INDEPENDENT (memory)

Solar wind

The times between events 
(waiting times) are 
distributed according to a
power law

Pdf(∆t) ~ ∆t -β

The turbulent energy 
cascade generates 
intermittent “coherent”
events at all scales.



Power law distribution for waiting times

(Perhaps) all turbulent flows share this characteristic. 
Power laws must be reproduced by models for turbulence.

Fluid flow Laboratory plasma



Where the turbulence of water 
comes to rest (?)

3th question



Dissipation of energy in classical turbulence

When the dissipative time becomes of the order of the nonlinear eddy turnover 
time, the energy cannot be transferred efficiently. The process becomes 
dissipative and energy is dissipated.

Dissipation length

Since R=106 for the swimmer

We cannot observe structures on 
scales lesser than 1 mm



Dissipation through isolated bursts: 
finite-time singularities

Dissipative structures are very localized both in 
space and time (intermittency in the dissipative 
domain). Energy is dissipated through 
isolated bursts. 
This process can be viewed as a generation of 
finite-time singularities:

Numerical simulation The sum of eddy-turnover 
times CONVERGES as the 
scale length tends to zero.

The energy is transferred towards structures of ZERO length in a
FINITE time, this generates singularities in the dissipative domain.

Eddy-turnover time: lifetime of eddies



Time series of flare events

Hard X-ray  ( > 20 keV):
Intermittent spikes, duration 1-2 s,          
Emax ~ 1027 erg
Numerous smaller spikes down to 
1024 erg (detection limit)

Parker’s X-ray corona: superposition of a very 
large number of flares (NANOFLARES)

What happens in real plasma turbulence?What happens in real plasma turbulence?

Example of Solar flares: impulsive annihilation of magnetic enerExample of Solar flares: impulsive annihilation of magnetic energy gy 
at spontaneously generated current sheets in a turbulence insideat spontaneously generated current sheets in a turbulence inside
the solar corona (?) the solar corona (?) 
(Boffetta, Carbone, Giuliani, Veltri, Vulpiani, Phys. Rev. Lett. 1999)



Power law statistics of bursts

Total energy, separation times, peak energy and 
(more or less!) lifetime of individual bursts seems 
to be distributed according to power laws.



Geometry of dissipative bursts

Intermittent dissipative structures:
Filaments in usual fluid flows, sheets in MHD flows

Dissipative structures near the wall

Current sheet



Current sheets are very 
interesting, because they 
are the place for the 
occurrence of a lot of 
physical processes: 
magnetic reconnection, 
particle acceleration, 
bursty magnetic energy 
annihilation, etc. 

Current sheets have been observed in 
space plasmas (Cluster spacecrafts)



While large-scales in solar wind can be 
described (more or less) within a fluid 
approach, dissipation is much more 

(perhaps completely) different.

The “dissipative” range of turbulence in solar wind 
should be similar to quantum turbulence 
(nonviscous superfluid phase of 3He).

Mean-free-path  λ =1013 cm 
(3 times Sun-Earth distance)

Spacecrafts observe a collisionless fluid !



Superfluid turbulence



spectra ~ 2 power 
laws: in origin 
attributed to “Inertial 
range” & “Dissipation 
range”

break in the 
vicinity of the proton 
cyclotron frequency 

on average f-5/3 in 
the low-frequency 
range

on average f-7/3 in 
the high-frequency 
range

Do we observe a “dissipative range” in 
the solar wind turbulence?



Energy power spectrum in superfluid turbulence



Why investigating turbulence? Why investigating turbulence? 
Increasing transport coefficientsIncreasing transport coefficients

Brownian diffusion Turbulent diffusion

Average distance 
of pairstR ≈

3tR ≈
1) Cuba-libre: few h
2) Heating a normal room: 347 h



Il trascinamento (drag) dovuto alla turbolenza ha un impatto terribilmente 
negativo per esempio nel moto delle automobili o nel trasporto di fluidi nelle 
condutture (petrolio, olio combustibile, etc..)

km/h 25000
6

==
L

PV
πυ

Parametri tipici dell’oggetto:
Potenza: P = 45 kW
Dimensioni: L = 2 m

Parametri tipici del fluido:
Densità: ρ = 1.2 kg/m3

Viscosità: υ = 2 × 10-5 Pa s

Velocità che dovrebbe avere 
l’auto SENZA turbolenza

Forza di Stokes agente: f = 6πυLV
Potenza dissipata: P = fV

V L

km/h 952
3

2 ==
L
PV

ρ

Velocità che l’auto ha per il fatto che 
esiste il drag turbolento

Tempo di generazione del vortice: t = L/V
Energia del vortice: E = ½ ρ L3 V2

Potenza dissipata dalla turbolenza: P = E/t

In condizioni stazionarie Nota: non dipende dalla viscosità ! 



Drag reduction: turbulence is investigated Drag reduction: turbulence is investigated 
also for practical purposesalso for practical purposes



Modeling turbulenceModeling turbulence



In the limit of high R, assuming a 
Kolmogorov spectrum E(k) ~ k-5/3

dissipation takes place at scale:

All features are (more or less) reproduced by 
numerical simulations.

Why models for turbulence?

4/93)/( RlLN D ≈≈

4/3−≈ LRlD

Typical values at present reached by 
high resolution direct simulations
R ~ 103 - 105

Input

Output

Transfer
the # of equations to be solved is 
proportional to

For space plasmas:   R ~ 108 - 1015

At these values it is not possible to 
have an inertial range extended for 
more than one decade. No possibility 
to verify asymptotic scaling laws, 
statistics...



How to build up shell models (1):
Introduce a logarithmic spacing of wave 

vectors space (shells)

Nn
kk n

n

,...,2,1
0

=
= λ

In this way we can investigate properties 
of turbulence at very high Reynolds 
numbers.

We are not interested in the dynamics of 
each wave vector mode of Fourier 
expansion, rather in the gross properties 
of dynamics at small scales.

The intershell ratio in general 
is set equal to λ = 2.



How to build up shell models (2):
Assign to each shell ONLY one (in fluids) 

or two (in MHD) dynamical variables;

)()()( tbtutz nnn ±=±

These variables take into 
account the averaged 
effects of velocity
modes between kn and 
kn+1, that is fluctuations 
across eddies at 
the scale ln ~ kn

-1

Shell variables at a given scale play the 
role of increments at a given separation

In this way we ruled out the possibility 
to investigate BOTH spatial and temporal 
properties of turbulence. We loose 
geometrical effects due to different 
orientation of wave vectors
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How to build up shell models (3):
Write a nonlinear model with quadratic couplings and fix as 

more as possible the coupling coefficients
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Invariants of the dynamics 
in absence of dissipation and 
forcing:

1) total energy
2) cross-helicity
3) magnetic helicity
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MHD equations in 
Fourier space

Interactions between nearest and next nearest shells



GOY shell model
( ) ( ) ( )

( ) ( ) ( )
*

121211112121

*

121211112121

4
1

2
)1(

4
1

2





 −

−
+−+−−−=





 −

−
−−−−=

−−−−+−+−++++

−−−−+−+−++++

nnnn
m

nnnn
m

nnnnmn
n

nnnnnnnnnnnnn
n

bubuubbuubbuik
dt
db

bbuubbuubbuuik
dt
du

δδδδ

δδ









=

+=

∑

∑

n
nnc

n
nn

buH

buE

*

22

Re2

3/1;4/5

2

2

−==

=∑

m

n n

n

k
b

H

δδ      

The model conserves also a “surrogate” of 
magnetic helicityConserved 

quantities
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H positive definite: 2D case H non positive definite: 3D case

There is the possibility to introduce 
“2D” and “3D” shell models.
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Spectral properties of the 3D model:
Numerical simulations with: N = 26 shells; viscosity = 0.5 · 10-9

Kolmogorov spectrum is a fixed point of the system.
Inertial and dissipative ranges + intermediate range well visible in shell models

We use a Langevin equation for the external forcing term 
acting only on the velocity field, with a correlation time τ
(eddy-turnover time)

3/22 )( −≈≈ nnnn kkkEu



Properties of 2D and 3D model: 
dynamo and anti-dynamo action

Time evolution of magnetic energy

K-2/3

time

Starting from a seed, the magnetic 
energy increases towards a kind of 
equipartition with kinetic energy.

K-4/3

3D 2D

The 2D model shows a kind of 
“anti-dynamo” action: 
a seed of magnetic field cannot 
increase.



An exact relation for shell model

1

3
4)( −±± −= nn ktY ε

The analogous of the 
Yaglom law within the 
shell model

The 3D shell model reproduces 
the energy cascade of turbulence

a) The negative sign means that an energy cascade exists;
b) Non-gaussian features of fluctuations



Time intermittency

[ ]*)()( 1 ttkFktu h
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Fields at n = 5 look more like gaussians, fields at n = 14 are made by pulses 
time intermittency time intermittency (yet poorly understood)

Time evolution of shell variables at three different shells.

A shell model possess pulse 
solution of width O(kn

h-1) Time intermittency related to nonlinear dynamics



Scaling of moments of shell fields

A departure from the 
Kolmogorov law must be 
attributed to the “time 
intermittency” in the shell 
model.

[ ] q
n

q
n ku ζ−≈)Re( Scaling exponents obtained 

in the range where the flux 
scales as kn

-1

Fields play the same role the same “amount” of intermittency

The departure from the 
Kolmogorov law measures the 
“amount” of intermittency



Waiting times in the MHD shell model

Time intermittency 
in the shell model 
is able to capture 
also that property 
of real turbulence

Chaotic dynamics 
generates non 
poissonian events



Dissipative bursts in shell model

The energy 
dissipation rate is 
intermittent in 
time.
Energy is 
dissipated 
through impulsive 
isolated events 
(bursts).
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Inside bursts
Through a threshold process we can identify and 
isolate each dissipative bursts to make statistics



Some statistics
Let us define some statistics on impulsive events

1) Total energy of 
bursts

2) Time duration
3) Energy of peak

In all cases we 
found power laws, 
the scaling exponents
depend on threshold.



The waiting times

The time between 
two bursts is t, and 
let us calculate the 
pdf p(t).

WE FOUND A 
POWER LAW

Even dissipative 
bursts are NOT 
INDEPENDENT



UnUn’’ultima ultima 
cosa prima di cosa prima di 

lasciare lasciare 
Leonardo da Leonardo da 

VinciVinci



L’osservazione della 
realtà è solo una 

questione di “tecnica”?

E’ stupefacente come Leonardo riesce a riprodurre la 
realtà osservata. E’ solo bravura “tecnica” o osservava la 
realtà in modo differente da come possiamo farlo noi?



Ricerca scientifica:Ricerca scientifica:
stupore e desiderio.stupore e desiderio.

“E tirato dalla mia bramosa voglia, vago di vedere la gran copia delle varie e 
strane forme fatte dalla artifiziosa natura, raggiratomi alquanto infra gli 
ombrosi scogli, pervenni all’entrata di una gran caverna, dinanzi alla quale 
restato alquanto stupefatto e ignorante di tal cosa […] e spesso piegandomi 
in qua e in là per vedere se dentro vi discernessi alcuna cosa; e questo 
vietatomi per la grande oscurità che là dentro era. E stato alquanto, subito 
salse in me due cose, paura e desiderio: paura per la minacciante spelonca, 
desiderio per vedere se là entro fusse alcuna miracolosa cosa.”

(Leonardo Da Vinci, Scritti letterari)

La ricerca scientifica parte dallo stupore per tutto ciò che esiste, e lo stupore 
diventa desiderio di vedere di più, di scrutare, di osservare nei particolari. E 
l’osservazione di cose nuove non fa che accrescere lo stupore dell’inizio.

Lasciamo raccontare questa dinamica da Leonardo stesso



…e quando miro in cielo arder le stelle;
dico fra me pensando: a che tante facelle?
Che fa l’aria infinita, e quel profondo infinito seren?
Che vuol dir questa solitudine immensa? 
ed IO che sono? Così meco ragiono.

Giacomo Leopardi
Canto notturno di un pastore errante dell’Asia

La dinamica descritta da Leonardo fa parte della natura non 
solo dello scienziato, ma di ogni uomo perché suscita una serie 
di domande. Come riportato in modo mirabile da Leopardi


