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Nanomagnets
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Rectangular Nanomagnet: bistable system
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Non — Adiabatic Switching of
Small Magnets
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Adiabatic Switching
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Irreversible reset
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FIG. 3 (color online). (a) Two possible computation cycles for a nanomagnetic logic circuit containing a single majority logic gate
(MLG) and (b),(c) their corresponding hysteresis loops and energy dissipation. In (a), the circuit computes the majority vote of three
inputs (leftmost nanomagnets) and passes the result to an output (rightmost nanomagnet). After logic execution, the circuit is reset to
its initial state irreversibly (top branch) or reversibly (lower branch). In (b), the hysteresis loops for the magnetic field applied to the
nanomagnets to the right of the inputs is plotted. The nearest neighbor coupling energy was set to 50&7 in this simulation. In (c), the
energy dissipation of both computation cycles is plotted as a function of the nearest neighbor coupling energy between nanomagnets.



Logic Gates with Nanomagnets
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Figure 2.6: Thermal switching of a majority logic gate. a)-c), PEEM images show the final magnetization
state of a single majority logic gate structure performing computations for several input combinations using
only thermal energy. d)-f), Schematics show the direction each nanomagnet in the gate is magnetized. The
nanomagnets were randomized by raising the temperature over the Curie point. As the gate is cooled through the
critical point, random fluctuations allow the nanomagnets to find their correct ground state orientation containing
the answer to the computation.
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Transfer of information in a chain of coupled Nanomagnets
a) - Fixed input bit
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Figure 2. (a) Hysteresis loops for different aspect ratio magnets: (b) majority gate design where top and bottom inputs are larger than the
middle input; (c) when subjected to two fields of opposite sign and magnitude, a strong field sets the magnetization state of all inputs, while
a weaker field only reverses the magnetization state of the shorter input magnet. Note that the gate is in a logically correct state. Also, more
fine-grained, quantitative data is presented in section 6.
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