II. Phonon engineering and heat conduction

Dr. P.-Olivier Chapuis
Institut Catala de Nanotecnologia (ICN-CIN2)
Barcelona, Spain

NiPS Summer School on “Energy Harvesting at the micro- and nano-scale”
Avigliano Umbro TR, Italy, 1st-8th August 2010
The Phononic heat conduction

- Phononic thermal conductivity → spectrum!
- Phonon scattering mechanisms → intrinsic
- Phonons at nanoscale → solve BTE
- Phonon transmission at interfaces → diffuse?
- Phonons in novel materials → better transport?
- Heat transfer phonons and measurements → techniques
Thermal conductivity k has different contributions:

$$k = k_{\text{phonon}} + k_{\text{electron}}$$

Wiedemann-Franz law for an approximation of electronic contribution in the thermal conductivity

$$L_0 = \frac{k_{el}}{\sigma T} = \frac{\pi^2}{3} \left(\frac{k_B}{e} \right)^2 = 2.44 \cdot 10^{-8} \text{W} \Omega K^{-2}$$

Silicon (undoped)

- $k_{Si} = 149 \text{ Wm}^{-1}\text{K}^{-1}$
- $\sigma_{Si} = 10^{-3} \text{ \Omega}^{-1}\text{m}^{-1}$

Graphite

- $k_{\text{C_graphite}} = 140 \text{ Wm}^{-1}\text{K}^{-1}$
- $\sigma_{\text{C_graphite}} = 6.1 \cdot 10^4 \text{ \Omega}^{-1}\text{m}^{-1}$

Wiedemann-Franz law approximations:

$$\frac{k_{Si,e^-}}{k_{Si}} = \frac{L_0 T_e \sigma_{Si}}{\lambda_{Si}} \ll 1$$

$$\frac{k_{\text{C_graphite},e^-}}{k_{\text{C_graphite}}} = \frac{L_0 T_e \sigma_{\text{C_graphite}}}{k_{\text{C_graphite}}} \approx 0.3\%$$
The model of the thermal conductivity

- Solution of a Boltzmann transport equation (Peierls)

\[
\frac{\partial f}{\partial t} + \nabla \cdot \vec{v} f + \frac{\vec{F}}{m} \cdot \nabla \vec{v} f = \frac{\partial f}{\partial t}_\text{coll} = -\frac{f - f_0}{\tau(\omega)}
\]

(Relaxation time approximation)

\[
f = f_0 - \tau(\omega) \cdot (\vec{v} \cdot \vec{\nabla}_r f_0)
\]

\[
\phi = \sum_i E_i f_i \vec{v}_{i,x} = \sum_{i,\text{pol}} \int_{0}^{\infty} g(\omega, p) E(\omega) f(\omega) \vec{v}_{i,x}(\omega, p) d\omega
\]

\[
f_0(\omega, T) = \frac{1}{e^{\frac{\hbar \omega}{k_B T}} - 1}
\]

Bose-Einstein statistics

\[
k = \sum_{\text{pol.}} \int_{0}^{\infty} \frac{\hbar \omega}{3} \cdot \frac{df_0}{dT} \cdot (v \tau) \cdot g(\omega) \cdot v d\omega
\]

\[
\vec{\phi} = k \cdot \vec{\nabla}_r T
\]

NB: Isotropic approx. for v, \(\tau,\ldots\)
The model of the thermal conductivity

- Solution of a Boltzmann transport equation (Peierls)

\[
\frac{\partial f}{\partial t} + \vec{v} \cdot \vec{\nabla} f + \frac{F}{m} \vec{\nabla} \cdot \vec{v} f = \frac{\partial f}{\partial t}_{\text{coll}} = \frac{f - f_0}{\tau(\omega)}
\]

(Relaxation time approximation)

\[
k = \sum_{\text{pola}} \int_0^{+\infty} \frac{1}{3} \hbar \omega \cdot \frac{df_0}{dT} \cdot (v \tau) \cdot g(\omega) \cdot v d\omega
\]

\[
f_0(\omega, T) = \frac{1}{e^{\hbar \omega/k_B T} - 1}
\]

Bose-Einstein statistics

Planck’s law for phonons

Wien’s law for phonons

\[
\lambda_D = \frac{h v_s}{2.8 k_B T}
\]

\[
v_{s, Si} \sim 4.5 \times 10^3 \text{ ms}^{-1}
\]
Phononic thermal conductivity

Phonon spectrum

MD calculations with bulk Si

Calculated phonon density of states (D) in a e=37 nm Si nanowire

Henry and Chen,

Lü, JAP 104, 054314 (2008)
Which phonons?

The acoustic phonons are carrying the heat.

\[
\begin{align*}
 k &= \sum_{\text{pola.}} \frac{1}{3} \int_0^{+\infty} \hbar \omega \cdot \frac{df_0}{dT} \cdot (v \tau) \cdot g(\omega) \cdot v d\omega \\
 &= \int_0^{+\infty} \frac{1}{3} c_\omega v(v \tau) d\omega \quad \rightarrow \quad k = \frac{1}{3} \rho c_p v_s \Lambda
\end{align*}
\]

NB: Different from the specific heat!

Chen, JHT (1998)
Finiteness of the thermal conductivity..?

- Critical parameter: The phonon relaxation time as without it the propagation would be infinite!

In this absence of defects, it is due to the nonlinearity of the force field between atoms

NB: k has a 3D meaning...

→ FPI (Fermi Pasta Ulam) paradox of the atomic chain

k does not always exist when nonlinearity!

$k \sim L^\alpha$, α not always 0.

see Lepri etc.
Scattering mechanisms
that do not conserve the momentum

Origin of the different terms in the mean free path

• Umklapp (Klemens model)
 Origin: Nonlinearity=Anharmonicity !!

\[\tau_U(\omega)^{-1} \sim A_1 e^{-\theta_D/bT} \Gamma^m \omega^m \]

\[\hbar \omega_1 + \hbar \omega_2 = \hbar \omega_3 \]
\[\vec{k}_1 + \vec{k}_2 = \vec{k}'_3 \text{ but } \vec{k}_3 \text{ in the end} \]

(Very schematic !!)
Scattering mechanisms

Origin of the different terms in the mean free path

- Umklapp (Klemens model)
 Origin: Nonlinearity=Anharmonicity !!
 \[\tau_U(\omega)^{-1} \sim A_1 e^{-\theta_D/\hbar T^3} \omega^2 \]

- Boundary scattering of the particle
 \[\tau_B(\omega)^{-1} \sim A_2 \nu(\omega)/D \]

To be taken into account only in crude model if dispersion relation have not been calculated!
Scattering mechanisms

Origin of the different terms in the mean free path

- Umklapp (Klemens model)
 \[\tau_U(\omega)^{-1} \sim A_1 e^{-\theta_D/bT^3}\omega^2 \]
 Origin: Nonlinearity=Anharmonicity !!

- Boundary scattering of the particle
 \[\tau_B(\omega)^{-1} \sim A_2 v(\omega)/D \]

- 'Rayleigh' scattering due to impurities
 Similar to electromagnetics \(\rightarrow \) Mie theory
 \[\tau_I(\omega)^{-1} \sim A_3 \omega^4 (d_{\text{part}}<<\lambda) \]

Majumdar, JAP (2005)

NIPS Summer school, August 2010
Origin of the different terms in the mean free path

• Umklapp (Klemens model)
 Origin: Nonlinearity=Anharmonicity !!
 \[\tau_U(\omega)^{-1} \sim A_1 e^{-\theta_D/bT^3\omega^2} \]

• Boundary scattering of the particle
 \[\tau_B(\omega)^{-1} \sim A_2 v(\omega)/D \]

• ‘Rayleigh’ scattering due to impurities
 Similar to electromagnetics \(\rightarrow\) Mie theory
 \[\tau_I(\omega)^{-1} \sim A_3 \omega^4 (d_{\text{part}}<<\lambda) \]

• Electron-phonon interaction
 \[\tau_{\text{e-\text{ph}}}(\omega)^{-1} \sim T \]
Scattering mechanisms

Origin of the different terms in the mean free path

- **Umklapp (Klemens model)**

 Origin: Nonlinearity=Anharmonicity !!

 \[\tau_U(\omega)^{-1} \sim A_1 e^{-\theta_D/bT^3\omega^2} \]

- **Boundary scattering of the particle**

 \[\tau_B(\omega)^{-1} \sim A_2 v(\omega)/D \]

- ‘Rayleigh’ scattering due to impurities

 Similar to electromagnetics → Mie theory

 \[\tau_I(\omega)^{-1} \sim A_3 \omega^4 (d_{\text{part}}<<\lambda) \]

- **Electron-phonon interaction**

 \[\tau_{e-ph}(\omega)^{-1} \sim T \]

Usually: Mathiessen rule of the relaxation time \(\tau(\omega)^{-1}=\Sigma \tau_i(\omega)^{-1} \)

NB: Curious: Same treatment of elastic, inelastic etc. lifetime
Phonon scattering mechanisms

Scattering mechanisms (2)

Leading mean free paths...

$\Lambda = \nu_g \tau$

10nm Si particles in a matrix of Ge

J.Y. Duquesne, INSP, Paris

NIPS Summer school, August 2010
Phonon scattering mechanisms

Mean free path distribution

\[\Lambda = v_g \tau \]

MD calculations with bulk Si

Figure:

- Graph showing mean free path distribution with curves for 300 K and 1000 K.
- Legend indicating different temperatures: 300 K and 1000 K.

How to deal with BTE at low D?

- At small scale (space/time), the Fourier approach breaks down!
 - Dispersion relation → wave effect
 - Phonon density of states

 Limitation of the approach: \(L \sim 2\pi v/\omega \) [0–20nm]
 \(L \sim \Lambda \) [10–1000nm?]

- One needs then
 - 'Grey approximation'

<table>
<thead>
<tr>
<th>to solve the BTE (long !)</th>
<th>to use a simulation method at the atomic scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Probabilistic: Monte-Carlo method</td>
<td>- Molecular dynamics</td>
</tr>
<tr>
<td>- Approx: Discrete ordinate (Radiation)</td>
<td>- Lattice dynamics</td>
</tr>
<tr>
<td>- Approx.: Ballistic-diffusive equation</td>
<td>- Atomistic Green’s function method</td>
</tr>
</tbody>
</table>

- ‘Grey approximation’ \(\tau(\omega) = \tau \)
Fourier vs BTE at nanoscale
Examples taken from Lacroix, Joulain, PRB (2005)

NB: Cattaneo-Vernotte
\[\frac{1}{\tau} \frac{\partial T}{\partial t} + \frac{\rho c}{\partial t} \frac{\partial^2 T}{\partial t^2} = k \Delta T \]
also incomplete

Stationary temperature profile between two parallel thermalized media

Propagation of heat

Transverse

Longitudinal

‘Temperature jump’
Reducing the thermal conductivity
Impurities or nanoparticles

• Useful for the generation of thermoelectricity!

Efficiency depends on figure-of-merit ZT

\[Z = \frac{S^2 \sigma}{k_{el} + k_{ph}} \]

Strategies to decrease \(k_{ph} \)
(without impact on \(\sigma \) and \(S \))

Adding impurities or nanoparticles!

→ impacts the high-frequency acoustic phonons

Majumdar, PRL (2007)

ErAs in InGaAs

NIPS Summer school, August 2010
Reducing the thermal conductivity
Boundaries

• Useful for the generation of thermoelectricity!
 Efficiency depends on figure-of-merit ZT
 \[Z = \frac{S^2 \sigma}{(k_{el} + k_{ph})} \]

Strategies to decrease \(k_{ph} \)
(without impact on \(\sigma \) and \(S \))

Adding boundaries → impacts all phonons

Ball-milling

Chen and Ren, Science (2008)

NIPS Summer school, August 2010
Reducing the thermal conductivity
Boundaries

• Useful for the generation of thermoelectricity!
 Efficiency depends on figure-of-merit ZT

\[Z = \frac{S^2 \sigma}{(k_{el} + k_{ph})} \]

Strategies to decrease \(k_{ph} \)
(without impact on \(\sigma \) and \(S \))

Adding boundaries
 \(\rightarrow \) impacts all phonons

Here in nanowires

Majumdar, APL (2003)

NIPS Summer school, August 2010
Reducing the thermal conductivity
Roughness

• Useful for the generation of thermoelectricity!
 Efficiency depends on figure-of-merit ZT
 \[Z = \frac{S^2 \sigma}{(k_{el} + k_{ph})} \]

Strategies to decrease \(k_{ph} \)
(without impact on \(\sigma \) and \(S \))

Adding amorphous layers at the boundaries
 → further reduces the thermal conductivity!

Majumdar, Nature (2009)
See also Heat, same issue
Phonon transmission at interfaces?

- Wave model for the low-frequency phonons

\[T = \frac{4Z_1Z_2}{(Z_1+Z_2)^2} \]

Acoustic wave!

\[Z_1 = \rho_1 c_1 \]

\[Z_2 \]

Thermal boundary resistance

NB: Terminology issue:
- Kapitza resistance (fluid-solid)
- Thermal interface resistance (thick interface)

Kapitza resistance (fluid-solid)
Thermal interface resistance (thick interface)

Transistor level
Polymer-based layer
Heat spreader

NIPS Summer school, August 2010
Phonon transmission at interfaces?

- More difficulty for the high frequency acoustic phonons

Diffuse mismatch model
= limit of strong diffuse scattering
Acoustic mismatch and diffuse mismatch models

DMM: ‘All correlations between ingoing and outgoing phonons are ignored’

\[
t_{12}(\omega) = r_{21}(\omega) = 1 - t_{21}(\omega)
\]

\[
t_{12} = \frac{1}{1 + \frac{1}{c_1^2} + \frac{1}{c_2^2}}
\]

(With assumption on the DOS)

<table>
<thead>
<tr>
<th>$R_{\beta_d} T^3$ with units $K^4/(W/cm^2)$.</th>
<th>Sapphire AMM</th>
<th>DMM</th>
<th>Quartz AMM</th>
<th>DMM</th>
<th>Silicon AMM</th>
<th>DMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>21.0</td>
<td>*</td>
<td>21.4</td>
<td></td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>18.5</td>
<td>24.4</td>
<td>9.77</td>
<td>13.8</td>
<td>14.5</td>
<td>18.9</td>
</tr>
<tr>
<td>Copper</td>
<td>18.5</td>
<td>20.1</td>
<td>8.66</td>
<td>9.43</td>
<td>14.3</td>
<td>14.6</td>
</tr>
<tr>
<td>Gold</td>
<td>18.9</td>
<td>*</td>
<td>18.1</td>
<td></td>
<td>7.48</td>
<td></td>
</tr>
<tr>
<td>Indium</td>
<td>20.4</td>
<td>17.7</td>
<td>7.19</td>
<td>7.10</td>
<td>12.1</td>
<td>12.2</td>
</tr>
<tr>
<td>Lead</td>
<td>18.8</td>
<td>17.8</td>
<td>7.67</td>
<td>7.14</td>
<td>12.8</td>
<td>12.3</td>
</tr>
<tr>
<td>Nickel</td>
<td>19.7</td>
<td>21.1</td>
<td>9.32</td>
<td>10.5</td>
<td>15.5</td>
<td>15.6</td>
</tr>
<tr>
<td>Platinum</td>
<td>20.8</td>
<td>18.7</td>
<td>13.0</td>
<td>8.10</td>
<td>21.3</td>
<td>13.2</td>
</tr>
<tr>
<td>Rhodium</td>
<td>20.8</td>
<td>*</td>
<td>23.6</td>
<td></td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>18.2</td>
<td>18.7</td>
<td>8.66</td>
<td>8.06</td>
<td>13.8</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Swartz and Pohl, RMP (1987)

→ In bulk systems, the resistances with DMM and AMM are similar (30%)
Phonon transmission at interfaces

Metal dielectric interface

- Measured values higher than prediction

Maxwell-Garnett approximation

\[\alpha = \lambda_3 \frac{\rho_2}{R} \]

Thermal "surface resistance"

Chapuis

NIPS Summer school, August 2010

(Phonon particule)
Thermal conductivity of ‘new’ materials

- Porous materials to harvest energy
- Other types of low-thermal conductivity materials (beating the ‘Einstein limit’ of amorphous materials)

Chiritescu, Science (2007)
Goodson, Science (2007)

Disordered layered crystal

$k_{\text{air}}(300 \text{ K}) = 0.025 \text{ Wm}^{-1}\text{K}^{-1}$

NIPS Summer school, August 2010
Thermal conductivity of ‘novel’ materials

- Carbon nanotubes
 - MWCNT: Kim et al, PRL(2001)
 - $k = 3000 \text{ Wm}^{-1}\text{K}^{-1}$

- Graphene
 - $k \sim 5 \times 10^3 \text{ W/mK}$
 - Balandin, Nano Letters (2008)

NIPS Summer school, August 2010
Other types of engineering

- Rectification?

Carbon nanotubes loaded with gradient of molecule density:

Chang, .., Majumdar, Zettl, Science 2006

- Phonon-based motor?

For the moment only due to the thermal gradient

Usual methods for heat transport characterisation

- 3ω method (Cahill, RSI, 1989)
 Based on $R = R_0 (1 + \alpha \Delta T)$
 and $\Delta T \propto P = R [I_0 \cos \omega t]^2$
 $\Rightarrow U_{3\omega} = \alpha / 2 R_0 I_0 \Delta T_{2\omega}$

- Suspended microresistors (Shi and Majumdar)

- Ultrafast pump-probe spectroscopy

S. Dilhaire (Bordeaux)
Heat transfer phonons and measurements

THE 3ω METHOD

- \(R(T) = R_0 \left(1 + \alpha \Delta T \right) \)
 Resistance depends on temperature

- \(I = I_0 \cos(\omega t) \) \(\to P(t) = R I(t)^2 = \frac{1}{2} R \left(1 + \cos(2\omega t) \right) \)
 \(\to T(t) = T_0 + T_{DC} + T_{2\omega} \cos(2\omega t + \phi_{2\omega}) \)
 Joule heating of an electric wire

- \(U = RI = R_0 I_0 \left[1 + \alpha \left(T_{DC} + T_{2\omega} \cos(2\omega t + \phi_{2\omega}) \right) \right] \cos(\omega t) \)
 \[= R_0 I_0 \left[(1 + \alpha T_{DC}) \cos(\omega t) + \frac{1}{2} \alpha T_{2\omega} \cos(\omega t - \phi_{2\omega}) + \frac{1}{2} \alpha T_{2\omega} \cos(3\omega t + \phi_{2\omega}) \right] \]
 \[= U_{\omega} + \frac{1}{2} \alpha R_0 I_0 T_{2\omega} \cos(3\omega t + \phi_{2\omega}) \]

- Temperature of the wire = \(f(\text{heat flux to the sample}) \)
Wave behaviour superimposed to the quasiparticle behaviour

Research driven by thermoelectric community and the quest for better insulator [lower k] or by microelectronics for better conductors [higher k]

Still plenty of room...
- Demonstration of the Boltzmann transport equation for phonons?
- Phonon relaxation time/mean free path
- Degree of diffusivity at the interface
- Filters and interference effects
- Localization etc.
- Amorphous materials... [not tackled here !]
Useful references

- **Books**
 - G. Chen, Nanoscale energy transport and conversion
 - S. Volz (ed), Microscale and Nanoscale Heat Transfer
 - S. Volz (ed), Thermal Nanosystems and Nanomaterials
 - Z.M. Zhang, Nano/Microscale heat transfer
 - ...

- **Reviews or interesting articles**
 - ...

NIPS Summer school, August 2010