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Outline for Short Course

• Introduction and Linear Energy Harvesting

• Energy Harvesting Transducers

– Electromagnetic

– Piezoelectric

– Electrostatic

• Wideband and Nonlinear Energy Harvesting

• Applications



Outline for This Lecture

• Industrial

• Light Switches (Smart Buildings)

• Tire Pressure Monitoring

• Wearable Electronics



Some Other Application Spaces

• Transportation
– Rail cars and undercarriages

• Automotive
– Harsh environment sensors

• Power generating pavement
– PaveGen (www.pavegen.com )

• Asset tracking
– Cold storage for food transport etc.

• Aerospace (sensors on/in planes and helicopters)

• Structural health monitoring sensors
– Bridges, highways, etc.

http://www.pavegen.com/


INDUSTRIAL



Industrial Vibration Energy Harvesting

• Process control sensors in industrial environments need 
reliable long life power supplies

• Much of the machinery vibrates at 50 or 60 Hz

• Very low level (10’s of mG) vibrations, but very 
consistent and stable frequency
– Standard linear oscillator based harvesters work well

• Industries
– Oil and gas

– Chemical manufacturing

– Waste water treatment

• Vibration Energy Harvesting works well and has been in 
use for several years



Beeby et. al, JMM, 2007

Perpetuum

http://www.perpetuum.com/

http://www.perpetuum.com/


Perpetua Power (Thermoelectric)

http://www.perpetapower.com/

http://www.perpetuum.com/


LIGHT SWITCHES



Why Light Switches?

• It is expensive to wire light switches for new and 
retrofitted buildings

• Wireless light switches can be moved based on users’ 
convenience without rewiring

• Changing batteries in light switches in large buildings 
with many many switches is a significant maintenance 
cost and headache

• Light switches can integrate into smart building control 
schemes



Enocean Light Switches

• Fixed amount of energy input, very roughly 4 N x 1 mm = 4 mJ max.
• Use Enocean’s radio and communications protocol
• Needs somewhere around 100 uJ for a transmission, or 2.5% efficiency
• I believe efficiency is closer to 10%
• Note, early designs were piezoelectric

EnOcean, www.enocean.com

http://www.enocean.com/


Enocean Light Switches

http://www.adhocelectronics.com/Products/Wireless-Lighting-Control

http://www.adhocelectronics.com/Products/Wireless-Lighting-Control


Rotational Switch

Developed for EcoHarvester.  Design published in Roundy and 
Takahashi, Sensors and Actuators, 2013



Objectives

• Create (and understand) an energy harvesting 
transducer for a light switch that is

– Planar and thin

– Cheap

– Highly efficient

– Leverages new magnetic sheet manufacturing technology
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d1, d2 refer to lateral position of conductors for a given coil.

y(i) refers to the distance from the magnet surface of the ith layer
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• Input displacement of 2mm (12 N max force, 12 mJ
input)

• 1.1 mJ output per actuation

• 9% efficiency
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Magnet Vs. PCB as Proof Mass

• Total energy generated is the same
• Lighter proof mass generates energy faster with higher 

initial voltages
• Heavier proof mass rings down slower, generates for a 

longer time
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• We’re operating at a total Q of just over 10.
• Effective Q from electromagnetic coupling is 65.
• Improved mechanical design could roughly double energy 

output.



TIRE PRESSURE MONITORING 
SYSTEMS



Tire Pressure Sensing Module

Courtesy of Beru AG

Roundy, PowerMEMS, 2008



What’s Wrong With A Battery?
• Concerns With Batteries

– Limited Lifetime
Life Requirement Is 10 Years
Will Batteries Last?

– Concerns At Temperature Extremes
High Internal Resistance At -40 C
Reliability At +125 C

– Expensive
Cost ~ $0.50

– Polluting
But This Isn’t A Really Big Application In The Battery World



The Energy Harvesting Problem

• Three critical requirements drove our solution
– First transmission within first 100 tire revolutions, no rechargeable 

battery
– During regular driving must transmit at least once per minute –

corresponds to at least 20 uW power generation 
– Low profile

gravity

Ar
At

W

harvester

Roundy et. al., Transducers 2013
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Self-tuning Pendulum System

• Pendulum located on 
rotating wheel or disc 
offset from center

• Centripetal acceleration 
will tend to straighten 
pendulum

• Restoring torque on 
mass (m) is a function of 
angular displacement 
(q2)

• Looks like a spring

w

L1

q2 m



Self-tuning Pendulum System
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Self-tuning Track System

• Pendulum is not 
practical for a car tire

• Track with radius of L2

and center of rotation 
L1 from wheel center 
performs same 
function

w

L1



Prototype Concept

Rim surface

Tangential direction

Curved trackPiezo beam

Limit stops



Tangential directionPiezo beam
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Proof Mass
End Springs

Motion

Coil Leaf Spring

Piezoelectric 
beam

Force
translator

End 
springs



Simulation Output
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Test Stand Results
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Test Stand Results
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Road Test Results
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ENERGY HARVESTING FOR 
WEARABLES



Heel Strike - Shoes

Krupenkin and Taylor. 2011 Nature Communications

Claim 1 watt nominal power

See also http://www.instepnanopower.com/

http://www.instepnanopower.com/


Heel Strike - Shoes

http://www.energyharvesters.com/

Claim 1 watt nominal power (also)

Underlying technology does not 

seem to be disclosed

And, many others like this

http://www.energyharvesters.com/


Inertial Harvesters Worn on Body

• http://www.getampy.com/

• “An hour of exercise can produce up to 1 hour smart phone 
battery life.”

• My own testing falls very far short of this.

http://www.getampy.com/


Inertial Harvesters Worn on Body



Energy Harvesting for Wearables

• Cleary a big market where power sources are important

• What role can / will inertial energy harvesting play?

Antenna

Low-

Power 

Sensors

Wearable Materials

Low-Power 

Electronics

Energy

Harvesters



Standard Quartz Watch

< 10 uW

Jawbone UB4

• Battery:  38 mAh, 3.6 v = 137 J

• Lasts “up to 7 days”.  

• 225 – 500 uW average power draw

Apple Watch (38 mm version)

• Battery:  205 mAh, 3.6 V = 738 J  

• Lifetime: 5 – 18 hrs  14 - 41 mW

• 14 – 41 mW average power draw



How Much Potential Power Is There?

Mitcheson, P.D.; et. al. "Energy Harvesting From Human and Machine Motion for Wireless 

Electronic Devices," in Proceedings of the IEEE , vol.96, no.9, pp.1457-1486, Sept. 2008

𝑃𝑚𝑎𝑥 =
2

𝜋
𝑌0𝑍𝑙𝜔

3𝑚

Y0 = excitation amplitude (m)

Zl = maximum proof mass motion range (m)

w = excitation frequency (rad/s)

m = proof mass  (kg)



How Much Potential Power Is There?

• Linear proof mass motion

• Proof mass density = 20 g/cc

• ½ available space taken by 
proof mass

• Transducer takes no space

• Proof mass motion is 
“optimally damped”

• 1G continuous excitation

Mitcheson, P.D.; et. al. Proceedings of the IEEE,  2008

1G excitation



Rotation Based Energy Harvesters

400 mJ/day

9.3 uW ave (12 hr day)

Kinetron data sheet

Kinetron generator in Swatch Autoquartz watch

Seiko Kinetic watch

5-10 uW average

Mitcheson, 2010

Paradiso and Starner, 2005



Theoretical Maximum Power
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Theoretical Maximum Power
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Theoretical Maximum Power
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Where Is the Potential for Improvement?

• Watches have relatively high total (mechanical + electrical) 
damping with De >> Dm

• Must overcome static friction / damping under low 
excitation to start generating much energy.  
– Underperform during walking.

• Other inefficiencies
– 40% efficiency between energy stored in intermediate spring and 

electrical power output

• Don’t take advantage of potentially beneficial dynamics (i.e. 
springs and resonance)



Theoretical Maximum Power
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Pillatsch, et.al. 2013

7 uW - Jogging

Lockhart, et.al. 2014

11 uW – “Continuous 

plucking”

Renauld, et.al. 2009

47 uW – “Continuous 

rotation”

Rao, et.al. 2013

100 uW – jogging

33 uW - walking



Piezo / Magnetic Harvester

Piezo beams

Magnets

Rotor



Prototype and Test Results

Custom fabricated thinfilm PZT

System design, and 

testing



Prototype and Test Results

* Best performing beam shown above, which 

is a single electrode (i.e. unimorph).  

Assumes beams perform at this equivalent 

level. 

Input
Total Power 

[µW]

Total Power 

[µW]

(best* X12)

Swing Arm

30 sin
2𝜋𝑡

𝑇

T=1s 10.3 41.8

On Wrist
Jogging in place 38.3 156.6

Rotating the wrist 25.1 91.4

Shaking in 

hand

Rotor in continuous 

rotation
37.8 158.8



Conclusions

• There is about 1 order of magnitude gap between what 
current COTS (and research) devices provide (~ 10 uW) 
and what wearable systems need (~ 100 uW)

• Theory indicates that  it is possible to close that gap in a 
~ cm3 size device … but technological solutions will  
need to be developed that approach the theoretical 
maximum

• Eccentric rotor based devices are promising … but there 
may be other approaches that could get closer to the 
theoretical maximum
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