ELECTRICAL ISSUES

Francesco Orfei

NiPS Lab, Dept. of Physics, University of Perugia, Italy francesco.orfei@nipslab.org

Outline

- Introduction
- Electrical impedance matching
- Electrical energy conversion
- Energy storage
- Power management

$$q =$$
 absolute value of electron charge 1.6021766208(98)×10⁻¹⁹ C

- $k = \text{Boltzmann's constant}, 1.38064852(79) \times 10^{-23} \text{ J/K}$
- T = absolute temperature (K)
- n = ideality factor (quality factor)

Outline

• Introduction

• Electrical impedance matching

- Electrical energy conversion
- Energy storage
- Power management

What about the power dissipated by R1?

Power as fuction of R1, from 100 Ohm to 10000 Ohm

11

What about the power dissipated in alternating current regime?

$$\begin{array}{ccc} \mathsf{Z}_{\mathsf{S}} & |I| = \frac{|V_{\mathsf{S}}|}{|Z_{\mathsf{S}} + Z_{\mathsf{L}}|} \\ \mathsf{V}_{\mathsf{S}} & \overrightarrow{\mathsf{I}} & \mathsf{Z}_{\mathsf{L}} & \overset{\frown}{\mathsf{I}} & \mathsf{P}_{\mathsf{L}} = I_{\mathsf{rms}}^{2} R_{\mathsf{L}} = \frac{1}{2} |I|^{2} R_{\mathsf{L}} = \frac{1}{2} \left(\frac{|V_{\mathsf{S}}|}{|Z_{\mathsf{S}} + Z_{\mathsf{L}}|} \right)^{2} R_{\mathsf{L}} \\ & = \frac{1}{2} \frac{|V_{\mathsf{S}}|^{2} R_{\mathsf{L}}}{(R_{\mathsf{S}} + R_{\mathsf{L}})^{2} + (X_{\mathsf{S}} + X_{\mathsf{L}})^{2}}, \end{array}$$

 R_S, R_L : resistance of the generator and of the load (real part of Z_S and Z_L) X_S, X_L : reactance of the generator and of the load (imaginary part of Z_S and Z_L)

Outline

- Introduction
- Electrical impedance matching
- Electrical energy conversion
- Energy storage
- Power management

Deep inside, are these devices AC powered or DC powered?

AC or DC? A war from the late 19° century

How DC powered devices are AC powered?

How DC powered devices are AC powered?

Components of a typical linear power supply

AC to DC conversion

The Positive Half-cycle

The Negative Half-cycle

AC to DC conversion

Bridge Rectifier Ripple Voltage

$$Ripple = \frac{I_{load}}{f \cdot C} \quad V$$

4 diodes bridge rectifier + 500μ F capacitor

4 diodes bridge rectifier + 500μ F capacitor

Voltage rectifier and multiplier

Half

NiPS Laboratory

Physical Systems

 C_2

Voltage Doubler Circuit

$$V_{out} = 2 \cdot V_{in}$$

Voltage Tripler Circuit $V_{out} = 3 \cdot V_{in}$

Voltage Quadrupler Circuit

$$V_{out} = 4 \cdot V_{in}$$

C4

Vaut

How to reduce the voltage drop of the diodes? Active (controlled) diodes!

C. Peters, J. Handwerker, D. Maurath and Y. Manoli, "A Sub-500 mV Highly Efficient Active Rectifier for Energy Harvesting Applications," in *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 58, no. 7, pp. 1542-1550, July 2011. doi: 10.1109/TCSI.2011.2157739

Outline

- Introduction
- Electrical impedance matching
- Electrical energy conversion
- Energy storage
- Power management

Find out more at www.imperial.ac.uk/grantham/energy-storage

Daily self-discharge: Percentage of charge lost in device each day

Efficiency: Energy out divided by energy in

Grantham Institute Climate Change and the Environment

31

supply of electricity

[†] Superconducting Magnetic Energy Storage

Capacitor

Energy is stored in the electric field

$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QV = \frac{1}{2} CV^2 \qquad \text{Energy}$$
$$\eta_E = \frac{energy}{volume} = \frac{1}{2} \varepsilon E^2 \qquad \text{Energy density}$$

Capacitor	Supercapacitor			
 electrons are moved from one electrode and deposited on the other charge is separated by a solid dielectric between the electrodes 	 electrodes are separated by a liquid electrolyte rich in ions when a voltage is applied to a supercap, these solvated ions form a double-layer of ions at each electrode (separated by the extremely thin non-conductive solvent) in what's known as the <u>electrical double layer effect</u> 			
• "small" capacitance (up to some thousand of μ F)	 huge capacitance (F or thousands of F) low breakdown voltage (few V) 			

• high breakdown voltage (up to kV)

44hth

NiPS Summer School 2017, Gubbio, July 2°, 2017

Batteries vs. Supercapacitors

Chemical Storage, high energy densities: 100's Wh/kg

Reactant diffusion, low power densities: 10 W/kg

Cu²⁺ + Zn(s) → Zn²⁺ + Cu(s)

Surface Charge Storage, low energy densities: 1-10 Wh/kg

High power densities: 1 kW/kg

High cycle life (10^5 cycles)

Energy Harvesting Perspectives

http://www.cymbet.com/design-center/energy-harvesting-dc.php

Rechargeable Solid State Battery Bare Die

http://www.cymbet.com/about-us/technology.php

Rechargeable Solid State Battery Bare Die

- All Solid State Construction
- Thousands of Recharge Cycles
- Low Self-Discharge
- Fast Recharge
- Smallest Commercially Available: 1.7 x 2.25 x 0.175
- Flat Output Voltage Profile: nominal 3.8V
- Capacity (nominal): 5µAh
- Charging source: 4.1V, 15 minutes to 80%
- Charge/discharge cycles: >5000 at 10% discharge

http://www.cymbet.com/about-us/technology.php

Rechargeable Solid State Battery Bare Die

Preliminary

EnerChip[™] CBC005 Energy Storage Device

Operating Characteristics

Paramet	er	Condition	Min	Typical	Max	Units
Discharge Cutoff Voltage	;	25°C	3.0(1)	-	-	V
Charge Voltage		25°C	4.0(2)	4.1	4.2	V
Self-Discharge (average; 25°C)		Non-recoverable	-	2.5	-	% per year
		Recoverable	-	1.5 ⁽³⁾	-	% per year
Operating Temperature		-	-20	-	+70	°C
Storage Temperature		-	-40	-	+125(4)	°C
Cell Resistance (25°C)		Charge cycle 2	-	7	11	KΩ
		Charge cycle 1000	-	31	48	
Recharge Cycles (to 80% of rated capacity; 4.1V charge voltage)	25°C	10% depth-of-discharge	5000	-	-	cycles
		50% depth-of discharge	1000	-	-	cycles
	40°C	10% depth-of-discharge	2500	-	-	cycles
		50% depth-of-discharge	500	-	-	cycles
Recharge Time (to 80% of rated capacity; 4.1V charge voltage)		Charge cycle 2	-	11	22	minutes
		Charge cycle 1000	-	45	70	
Discharge Capacity		400nA discharge; 25°C	5.0	-	-	μAh

http://www.cymbet.com/pdfs/DS-72-30.pdf

Rechargeable Solid State Battery Bare Die

http://www.cymbet.com/pdfs/DS-72-30.pdf

Discharge tests of AA NiMH battery at different rate

https://www.powerstream.com/AA-tests.htm

Outline

- Introduction
- Electrical impedance matching
- Electrical energy conversion
- Energy storage
- Power management

diffilite-

sical Systems

Typical wireless sensor node

CASE STUDY: TIME DISTRIBUTION OF THE OPERATING MODES

Period: 1 s µController: sleep mode 0,990 s µController: active mode 0,007 s µController: active mode + RX 0,001 s µController: active mode + TX 0,002 s

ENERGY CONSUMPTION vs OPERATING MODES

 $P_{IOT} = P_{\mu Controller} + P_{RX} + P_{IX} + P_{SUPERVISOR}$ $P_{\mu Controller} \propto I_{\mu Controller} = 2,4 \text{ mA} @ 16 \text{ MHz}, 270 \text{ nA } D - Sleep + WDT$ $P_{IX} \propto I_{IX} = 23 \text{ mA} @ 0 \text{ dBm} \qquad P_{RX} \propto I_{RX} = 19 \text{ mA}$ $P_{SUPERVISOR} \propto I_{SUPERVISOR} = 7 \mu \text{ A}$

ENERGY CONSUMPTION vs OPERATING MODES

Period: 10 s µController: sleep mode 9,990 s

 μ Controller: active mode 0,007 s μ Controller: active mode + RX 0,001 s μ Controller: active mode + TX 0,002 s

ENERGY CONSUMPTION vs OPERATING MODES

Period: 10 s µController: sleep mode 9,990 s

 μ Controller: active mode 0,007 s μ Controller: active mode + RX 0,001 s μ Controller: active mode + TX 0,002 s

Design rules:

Rule #1: there not exist one optimal solution for all the applications!

Rule #2: try to minimize the energy loss during power regulation!

Rule #3: not always the highest efficiency is the optimal design criteria. Probably the "highest power conversion ratio" is a better one!

- Simple/low cost solutions
- Low noise/low ripple applications
- Fast transient applications
- Low dropout applications
- Heavy

- Higher efficiency than linear regulators
- Lower heat produces
- High to low and low to gigh voltage

conversion

- Less board area
- Light

http://cds.linear.com/docs/en/application-note/AN140fa.pdf

Linear voltage regulators

A linear regulator implements a variable resistor to regulate the otput voltage

http://cds.linear.com/docs/en/application-note/AN140fa.pdf

Linear voltage regulators

http://cds.linear.com/docs/en/application-note/AN140fa.pdf

The calculation of switching related losses is usually not easy.

- DC conduction losses (transistor, diode, inductor)
- AC switching losses (switch ON and OFF time)
 - Inductor core losses (frequency depending)
 - Other losses (control circuitry...)

The switching related losses are proportional to switching frequency fs.

sical Systems

Linear vs Switching voltage regulators

http://www.ti.com/lit/an/slyt527/slyt527.pdf

http://www.ti.com/lit/an/slyt527/slyt527.pdf

