- Part 3 -
Energy Aware Numerics

Vincent Heuveline
The Challenge
Exa2green

Engineering Mathematics and Computing Lab
Steinbeis Europa Zentrum
Scientific Computing Group
High Performance Computing and Architectures Group
Swiss National Supercomputing Centre
IBM Research Division
Institute for Meteorology and Climate Research
Objectives

Smart algorithms
Develop new smart algorithms using energy-efficient software models.

Profiling and new metrics
Develop an advanced and detailed power consumption monitoring and profiling for quantitative assessment and analysis of the energy profile of algorithms.

Power-aware scheduling
Smart and power-aware scheduling and hardware adaption technology for HPC.

Proof of concept
Fast, accurate and energy-efficient computation of the exponential function

Applications:

- Neural networks
- Fourier transform
- Statistics, probability
- Radioactive decay
- Population models

Existing techniques:

- Power series
- IEEE-754 manipulation
- Look-up tables

Fast, accurate and energy-efficient computation of the exponential function

Existing techniques: Truncated power series

\[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \ldots \]

Method:
Compute partial sum

PRO: uses arithmetic, can exploit SIMD
PRO: flexible accuracy
CON: very slow convergence, too many FLOP for high accuracy
Fast, accurate and energy-efficient computation of the exponential function

Existing techniques: Truncated power series

\[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \ldots \]

Method:
Compute partial sum

\[e^x \approx \sum_{n=0}^{N} \frac{x^n}{n!} \]

PRO: uses arithmetic, can exploit SIMD
PRO: flexible accuracy
CON: very slow convergence, too many FLOP for high accuracy
Fast, accurate and energy-efficient computation of the exponential function

Existing techniques: IEEE–754 manipulation
Schraudolph 1999

\[e^x = \frac{2^x}{\ln 2} = 2^{x_i + x_f} = 2^{x_i} \cdot 2^{x_f} \]

\[\text{int } i = 2^{20} \left(\frac{x}{\ln 2} + 1023 \right) + C ; \]

\[
\begin{array}{cccccccc}
\text{double} & | x_i + 1023 | & \hat{x}_f \\
\text{i} & \text{i} & \text{i} & \text{i} & 5 & 6 & 7 & 8
\end{array}
\]

\[\implies (-1)^s (1 + m) 2^{c-1023} = (1 + \hat{x}_f) 2^{x_i} \approx e^x \]

where \(\hat{x}_f \) = 20 most significant digits of \(x_f + 2^{-20} C \)
Fast, accurate and energy-efficient computation of the exponential function

New technique:
Malossi, Ineichen, Bekas, Curioni: Fast Exponential Computation on SIMD Architectures. WAPCO 2015

Patent application no. CH920140048US1

\[e^x = 2^x \log_2(e) = 2^{x_i+x_f} = 2^{x_i} \cdot 2^{x_f} = (1 + x_f - C(x_f))2^{x_i} \]

exact correction

\[C(x_f) = 1 + x_f - 2^{x_f} \]

polynomial approximation

\[C_n(x_f) = a_0 + a_1 x_f + a_2 x_f^2 + \ldots + a_n x_f^n \]

return

\[\exp_n(x) := (1 + x_f - C_n(x_f))2^{x_i} \approx e^x \]
Fast, accurate and energy-efficient computation of the exponential function

Malossi, Ineichen, Bekas, Curioni: Fast Exponential Computation on SIMD Architectures. WAPCO 2015
ArduPower: A new low-cost internal wattmeter

✓ **Objective:** Measure internally the power consumption of computers

 Problem: internal power meters are expensive and difficult to use (e.g., National Instruments DAS)

✓ **Requirements:** Build-up a **accurate, small** and **cheap** new wattmeter device

 ✓ **Microcontroller:** Arduino Mega 2560 with 16 analogue channels ~50 EUR

 ✓ **Sensors:** Allegro Hall-Effect IC sensor ACS series (accuracy ±5%) ~2 EUR/chip

✓ **Solution:** A new shield for Arduino Mega with Allegro Hall-Effect sensors!
ArduPower: A new low-cost internal wattmeter

The prototype:

✓ Final prototype of the shield:
 ✓ ACS713 up to 20 A (DC) in (±1.5%)
✓ Total production cost: 100 EUR
✓ PCB circuits available on demand
✓ Integration into PMLib!

ArduPower: A new low-cost internal wattmeter

✓ An example using a PDE solver: (Partial differential equation solver for Gauss-Seidel and Jacobi Method)
Splitting Method

matrix splitting

\[A = L + D + U = \]

linear equation system

\[
(L + D + U)x = b \\
Dx = b - (L + U)x \\
x = D^{-1}b - D^{-1}(L + U)x
\]
Jacobi Iteration

\[x = D^{-1}b - D^{-1}(L + U)x \]

iteration matrix \(B \)

Jacobi iteration

\[x_{i}^{k+1} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j \neq i} a_{ij} x_{j}^{k} \right) \]

• parallel component updates within one iteration
• synchronization between iterations
• converges if \(\rho(B) < 1 \)
Asynchronous Iteration

Jacobi method

\[x_i^{k+1} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^k \right) \]

update function
shift function

Asynchronous iteration

\[x_i^{k+1} = \begin{cases}
\frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^k - s(k,j) \right) & \text{if } i = u(k) \\
 x_i^k & \text{if } i \neq u(k)
\end{cases} \]

- introduce asynchronism, reduce communication
- parallel component updates, less synchronization
- converges if
\[\rho(|B|) < 1 \]
Block-asynchronous Iteration

divide matrix into blocks

\[x_p^{\text{local}} \leftarrow D_p^{-1} \left[b_p^{\text{local}} - A_p^{\text{diag}} x_p^{\text{local}} - A_p^{\text{offdiag}} x_p^{\text{non-local}} \right] \]
Block-asynchronous Iteration on GPU

<table>
<thead>
<tr>
<th>SMX = streaming multiprocessor</th>
<th>cores per SMX</th>
<th>max. thread blocks per SMX</th>
<th>max. threads per thread block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla K40 15</td>
<td>192</td>
<td>16</td>
<td>1024</td>
</tr>
</tbody>
</table>

- matrix blocks correspond to thread blocks
- synchronous Jacobi iteration within the thread block
- asynchronous iteration with other thread blocks
Related Works

- Rosenfeld 1969: experiments on „chaotic relaxation“ for use on „parallel-processor computing systems“, simulation of current distribution in electric networks
- Chazan & Miranker 1969: first rigorous analysis of „chaotic relaxation“, convergence theory, examples of divergence
- Overviews of „asynchronous iteration“: e.g. Bertsekas & Tsitsiklis 1989, Frommer & Szyld 2005
- Anzt et al. 2011, 2013: block-asynchronous iteration on GPU-accelerated systems
Experimental setup

- energy measurement
 Zimmer Electronics Systems LMG450
 pmlib – power measurement library
Energy-to-solution & savings

- Large energy savings of more than 50% for GPU usage on small host systems, i.e. cases 1 x 8 and 2 x 8
- Moderate saving of 20% - 40% for GPU usage in cases 4 x 8 to 16 x 2
- Strong host systems can outperform GPU w.r.t. runtime and energy, see case 32 x 1
Thank you