Characterization and optimization of a 2DOF velocity amplified EM-EH

Elisabetta Boco, Valeria Nico, Declan O’Donoghue, Ronan Frizzell, Gerard Kelly, Jeff Punch
Outline

1. The harvester
2. Characterization through transfer functions of the inner mass system
 - Sine sweep of increasing frequency data
 - Comparison with decreasing frequency: hysteresis
3. Same analysis for the whole system
4. Optimization Process
 - Configuration
 - Output voltage and power comparison at each acceleration
The Harvester

- Two masses system: collisions between the inner small mass, and the outer bigger one, provide velocity amplification.

- A coil is embedded in the inner mass. It is oscillating between two sets of magnets providing a strong magnetic field in the area.

\[e.m.f. = -\frac{\partial \phi}{\partial t} \]

- The presence of two masses enlarges the bandwidth of the system, along with the periodic disconnection of the two masses from the springs.
Characterization: the transfer function

Let \(x(t) \) be the input and \(y(t) \) be the output of our system

\[
X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} \, dt
\]

\[
Y(s) = \int_{-\infty}^{\infty} y(t)e^{-st} \, dt
\]

\[
H(s) = \frac{Y(s)}{X(s)}
\]

The Laplace transform is the Fourier transform when \(s = j\omega \)

\(H(s) \) is the TF only for linear systems: in nonlinear systems \(H(x(t),\omega) \). So, calculating the TF at different amplitudes of input, can show if the system is linear.
Constant acceleration input

Fourier Transform of the acceleration input

Frequency [Hz]

Fourier Transform [m/s²/s]
Constant acceleration input

Fourier Transform of the Voltage Output

Fourier Transform [V*s]

Frequency [Hz]
Nonlinearity through TF: shifting

The stiffness “decreases” interesting for small devices!
The hysteresis phenomenon

Frequency response of ideal harmonic oscillator
Nonlinearity through TF: hysteresis

Transfer functions $a=0.2g$

- Decreasing Sine Sweep
- Increasing Sine Sweep

Frequency [Hz]
Nonlinearity through TF: hysteresis
Characterization of the whole system: TFs
Characterization of the whole system: TFs

Transfer functions at different accelerations

- $a=0.1g$
- $a=0.2g$
- $a=0.3g$
- $a=0.4g$
- $a=0.5g$

Frequency [Hz]
Characterization of the whole system: TFs

Transfer functions at different accelerations

Frequency [Hz]

TF
Characterization of the whole system: TFs

Transfer functions at different accelerations

Frequency [Hz]

TF

Vibrating Base

18/07/14
NiPS Summer school 2014-Workshop
Characterization of the whole system: TFs
Hysteresis
Optimization process

- Magnets 1/2 x 1/2 x 1/8 inches
- Coils of fixed volume r=9mm h=8mm
 - Wire diameter d=280um
 - Wire diameter d=170um
 - Wire diameter d=100um
- Outer mass steady
- For each coil the optimal resistance load has been found
- Comparison between output voltage and power for different coils at the same amplitude acceleration input
Load Resistance

Wire d=100um

Same analysis for each coil
Power Optimization
Acceleration $a=0.2g$
Power Optimization

Graphs showing power optimization across different frequencies.
Power Optimization

Acceleration $a=0.4g$
Power Optimization
Power Optimization

Acceleration $a=0.6g$
Conclusions and Wish List

✓ Study and interpretation of the TFs:
 ✓ At very little acceleration the system in basically linear, but early it becomes (also for the little mass alone) nonlinear
 ✓ We can think about miniaturize this system even if the linear resonance frequency increases, using the nonlinear shifting
✓ The coil with the 170um diameter wire seems to be the best for maximizing the power output with this set of magnets

➢ Find the best configuration for the magnets
➢ Miniaturization
Thank you for your attention.... Questions?