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Cost of remembering a bit of information
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In 1961, Landauer [R. Landauer, IBM J. Res. Develop. 5, 183 (1961)] pointed out that resetting a binary
memory requires a minimum energy of kBT ln(2). However, once written, any memory is doomed to lose its
content if no action is taken. To avoid memory losses, a refresh procedure is periodically performed. We present
a theoretical model and an experiment on a microelectromechanical system to evaluate the minimum energy
required to preserve one bit of information over time. Two main conclusions are drawn: (i) in principle, the
energetic cost to preserve information for a fixed time duration with a given error probability can be arbitrarily
reduced if the refresh procedure is performed often enough, and (ii) the Heisenberg uncertainty principle sets an
upper bound on the memory lifetime.
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The act of remembering is of fundamental importance in
human life. Not only do manmade objects such as monuments
and landscapes require maintenance to counterbalance their
deterioration, but also biological systems are subject to the
never-ending task of preserving shapes and functionalities by
fighting the universal tendency of entropy to increase. As
a consequence, the study of fundamental physical limits in
memory devices [1] has received considerable attention in
different contexts recently. Examples are in communication-
theoretic paradigms [2], proteins functionality [3], biological
noisy neural networks [4,5], future technologies [6,7], and
in the presence of limited knowledge [8,9]. However, the
fundamental energetic cost to preserve the state of a memory
has received little attention so far. In this work, we investigate
theoretically and experimentally the minimum energy cost
required to preserve classical information stored in digital
devices for a given time and with a given probability of failure.

To this end, we recollect that information is usually stored
in digital devices through binary numbers (0 and 1). As a
consequence, it is customary to represent a memory as a
two-state physical system with an observable x and a bistable
potential-energy landscape [Fig. 1(a)] [1,10–13]. The energy
barrier allows one to define the two logic states, e.g., x < 0,
representing bit 0, and x > 0, representing bit 1. Moreover,
the barrier allows one to statistically confine x for a given time
within one of the two wells [Fig. 1(b)], hence ensuring that
one given bit is stored. This confined state is a nonequilibrium
condition that evolves within the system relaxation time τk to
thermal equilibrium [Fig. 1(f)]. This process is described via
the time evolution of the probability density function p(x,t) as
follows. Let us assume we have a memory where bit 1 is stored.
The initial probability density p(x,0) shows a sharp peak
centered in the right well [Fig. 1(b)]. According to the dynamic
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of the system, p(x,t) will first relax inside the right well and
then it will diffuse into the left well, thus developing a second
peak [Figs. 1(b)–1(f)]. At any given time t , the probability
that the system encodes the wrong logic state is represented
by P0(t) = ∫ 0

−∞ p(x,t)dx. Clearly, P0 increases with time and
reaches the thermal equilibrium condition P0 = 0.5 when the
memory is statistically lost [Fig. 1(f)].

To fight this natural deterioration of the bit, it is customary
to perform a cyclic operation called refresh. This procedure
consists in reading and then writing back the content of the
memory, and it is periodically executed at intervals tR [14,15].
The refresh operation restores a nonequilibrium condition by
shrinking the width of each peak of p(x,t). Note that during
this refresh operation, no error correction is performed as the
overall purpose is merely to fight the diffusive process leading
to thermal equilibrium.

Based on this procedure, we can define the memory loss
probability PE at time t , i.e., after N = t/tR cycles, as

PE = 1 − [1 − P0(tR)]
t

tR . (1)

It indicates the probability to find the wrong value of the bit
when the memory is interrogated at any time during the interval
[0 − t] since its first writing, with a refresh interval tR . In any
practical application, it is interesting to a priori set both PE

and t , and then deduce the optimal tR to meet these targets.
Assuming that the refresh operation has an energetic cost Q,
what we want to address here is the fundamental minimum
energetic cost Qm to preserve a given bit for a time t , with a
probability of failure not larger than PE , while executing the
refresh procedure with periodicity tR . To this end, we proceed
as follows: we first investigate the maximum value of tR for
a given set of PE and t ; second, we perform an experiment
to measure the minimum energetic cost for a single refresh
operation; finally, we estimate the physical fundamental limits
associated with the overall procedure.

We start with the study of the maximum allowed value for tR .
Let us assume that the dynamics of the memory is characterized
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FIG. 1. (a) A generic binary memory is represented here in terms
of the stochastic dynamics of a variable x subjected to a bistable
potential (a). (b)–(f) The memory-loss mechanism when bit 1 is
initially stored. Blue (dark gray) curves give a qualitative time
evolution of p(x,t) as the relaxation to equilibrium process takes
place.

by a bistable Duffing potential,

U (x) = 4

(
−x2

2
+ x4

4

)
. (2)

The probability density function p(x,t) thus evolves according
to the following dimensionless Fokker-Plank equation [16,17]:

∂

∂t
p(x,t) = ∂

∂x

[
∂U

∂x
p(x,t)

]
+ T

∂2

∂x2
p(x,t), (3)

where T is the temperature of the thermal bath. Solving
numerically Eq. (3) and using Eq. (1), we obtain the maximum
refreshing interval tR that satisfies the a priori requirements
for t and PE (see Appendix A). Figure 2 shows the results of

FIG. 2. Plot of tR as a function of t and PE for a memory modeled
with bistable Duffing potentials. Here, tR is given as a multiple of τw ,
i.e., the relaxation time of the harmonic approximation within one
well.

FIG. 3. Experimental setup. (a) Lateral view: a magnet on the
cantilever tip and an electromagnetic coil are used to change
the effective stiffness of the cantilever. (b) Potential energy of the
cantilever tip, for two different voltages at the coil, reconstructed
from the equilibrium probability density function. Solid gray lines
represent the fitted harmonic potential. (c) Equilibrium probability
density function of the cantilever tip position as a function of the
voltage applied at the coil. The greater is the voltage, the greater is
the repulsive force, resulting in a flattening of the potential and in a
broadening of the equilibrium probability density function.

this study. We can see that large time t and small probability
of error PE yield short refresh time tR , as expected.

We now proceed to the second step of our program aimed
at determining the minimum energetic cost for a single refresh
operation. Within the formalism defined above, the refresh
operation consists in shrinking p(x,tR) inside one of the wells
of U (x). Thus, the energetic cost becomes a function of
tR identified above. If we assume that tR � τk , the system
dynamics is practically confined within one well. Here it can
be approximately described by the dynamics of a harmonic
oscillator, characterized by a Gaussian probability density
function [18].

To estimate the energy cost associated with a real re-
fresh procedure, we decided to perform an experiment em-
ploying a microelectromechanical oscillator composed of a
200-μm-long V-shaped structure with a nominal stiffness
k = 0.08 Nm−1, and a resonance frequency of 17 kHz. A
tiny NdFeB (neodymium) magnet is attached to the cantilever
tip with bicomponent epoxy resin reducing its resonance
frequency to 5.3 kHz. An external electromagnet is placed in
front of the cantilever, as depicted in Fig. 3(a). The deflection of
the cantilever, x, is measured with an atomic force microscope
(AFM)-like optical lever: a laser beam is focused on the
cantilever tip with an optical lens (focal length f = 50 mm),
and a small bend of the cantilever provokes the deflection
of a laser beam that can be detected with a two-quadrant
photodetector. For small cantilever deflections, the response
of the photodetector remains linear, thus x = rx�VPD , where
�VPD is the voltage difference generated by the two quadrants
of the photodetector and rx is a calibration factor obtained
through the frequency response of the system under the action
of thermal fluctuations. In the small-oscillation approximation,
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the system dynamics can be modeled as a single degree of
freedom subjected to a harmonic potential due to two forces:
the cantilever restoring force and the magnetic force between
the NdFeB magnet and the electromagnet. The measurement
has been performed in vacuum, at pressure of 1×10−3 mbar.
In this condition, the quality factor of the system is Qf = 300,
resulting in a relaxation time trelax = 20 ms. The experiment is
conducted at room temperature and the system is subjected to
thermal fluctuations and frictional forces as well. The magnetic
force can be altered over time by varying the voltage on
the electromagnet. In our experiment, the voltage applied to
the coil results in a repulsive force with the effect of softening
the potential energy of the system. The protocol used to
perform the refresh operation is the following: at time t = 0,
the voltage is linearly changed from the initial value V = 0.5V

to V = 0V . During this operation, the effective harmonic
potential changes from the one represented by the red (light
gray) dots in Fig. 3(b) to the blue (dark gray) ones. The
equilibrium probability density function of the tip position
changes accordingly, as depicted in Fig. 3(c), from right to left.
The entire procedure takes a time tp, after which the voltage
on the coil is suddenly changed back to V = 0.5V and kept in
this condition for a time tR .

The total work W performed by the external force on the
memory system during the refresh operation can be estimated
as [19,20]

W =
〈∫ τp

0

∂H (x,V )

∂V
V̇ dt

〉
, (4)

where H (x,V ) is the total energy of the system, x(t) is the
measured trajectory of the cantilever tip, V (t) is the voltage
applied on the electromagnet, and 〈·〉 denotes the average over
an ensemble of realizations. In particular, here we used ∼500
experimental trajectories for each selected time protocol τp

under study. Since there is no variation on the internal energy
of the system, the energetic cost Q of a refresh operation
coincides with the work performed on the system (Q = W ).
This quantity has to be compared with the thermodynamic
minimum −T �S, where (see Appendix B)

�S = kB ln

(
σi

σf

)
(5)

is the entropy change associated with the refresh operation,
σi is the target standard deviation of the Gaussian peak to be
achieved with the refresh, and σf is the standard deviation of
the Gaussian peak before the refresh. While σi can be arbitrary
chosen, σf depends on tR as (see Appendix B)

σf =
√

σ 2
w + exp

(
− tR

τw

)(
σ 2

i − σ 2
w

)
, (6)

where σw is the equilibrium standard deviation of the harmonic
oscillator and τw is the relaxation time of the harmonic
oscillator.

In Fig. 4(a), we show the measured values of Q required to
perform a single refresh operation as a function of the protocol
time tp, for fixed σi and σf . We can see that Q approaches the
minimum value given by Eq. (5) when tp increases towards the
quasistatic protocol condition. This observation is confirmed
for different values of �S, as we can see from Fig. 4(b).

FIG. 4. Experimental results of produced heat. (a) Produced heat
for a single refresh as a function of tp . By increasing tp , the produced
heat tends to the lower bound, Q = −T �S. Squares represent the
heat from the experiment, while the solid line is the fit with the Zener
dissipative model. (b) Produced heat in the quasistatic regime during
a single refresh operation for different entropy variations. Squares
represent the estimated heat from experiments, while the solid line is
given by Eq. (5).

There we show the measured values of Q for a quasistatic
protocol as a function of − ln(σi/σf ). Experimental points
are given as black squares, while the black solid line is the
theoretical prediction from Eq. (5). As it is well apparent, the
minimum energetic cost, represented by the thermodynamics
bound −T �S, can be reached in the quasistatic condition.
The dissipative model behind the power-law fit in Fig. 4(a)
is obtained by the Zener theory [13,21–24], assuming that
the dissipative processes can be expressed as the result of
frictional forces that represent the imaginary component of
a complex elastic force k(1 + iφ). In general, φ is a function
of the frequency and, for small damping, it can be expressed
as the sum over all the dissipative contributions. In our case,
φ(ν) = φstr + φth−el + φvis + φclamp. Here, φstr is the structural
damping (φ is independent of the frequency ν), φth−el and φvis

are the thermoelastic and viscous damping, respectively, that
can be assumed to be proportional to the frequency for frequen-
cies much smaller than the cantilever characteristic frequency,
and φclamp represents the clamp recoil losses [φ(ν) ∝ ν3].

Based on this result, we are now in a position to express the
minimum fundamental cost Qm for preserving a memory over
a time t with a failure probability equal to PE as

Qm = −NT �S = t

tR
kBT ln

⎛
⎝
√

σ 2
w + e− tR

τw

(
σ 2

i − σ 2
w

)
σi

⎞
⎠.

(7)

In Fig. 5(a), we show the minimum energy Qm as a function
of tR for a given choice of PE and t . It is interesting to observe
that this is an increasing function of tR . In particular, Qm

approaches the value 0 when tR goes to 0. This indicates that it
is possible, at least in principle, to preserve the memory for a
time t with failure probability PE while spending zero energy.
This is obtained when tR approaches 0, but it also implies
that the memory is always under refresh and never available
for use. Moreover, Qm diverges when tR approaches a limit
value tRMax that depends on PE . In fact, when tR � tRMax,
the imposed conditions on PE and t cannot be satisfied. On
approaching such a value, σi has to become smaller and
smaller, thus requiring a larger and larger energy. This is
apparent in Fig. 5(b), where we show the minimum energy Qm
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FIG. 5. Plots of Qm to preserve the memory for t = 1×103τk as
a function of (a) tR and (b) σi . Blue (dotted) lines are obtained with
PE = 1×10−6, red (dashed) lines with PE = 1×10−4, and yellow
(solid) lines with PE = 1×10−2. The inset in (a) shows the values
for Qm vs tp/τw , when t = 1×103τk , PE = 1×10−6, and tR = τw. A
finite protocol time tp , which is typical of experiments, adds an excess
dissipated heat to the blue line that marks the minimum value given
by Eq. (7).

as function of σi for a given choice of PE and t . There, Qm goes
to 0 when σi goes to σw. This implies that it is indeed possible
to preserve the memory for a time t with probability PE by
spending zero energy and this is realized when we operate
extremely close to the equilibrium configuration inside one
well (σi → σw). On the contrary, as we anticipated, Qm grows
toward infinity when σi → 0. Nonetheless, this last condition
is limited by the Heisenberg uncertainty relation. By taking
σi to coincide with the uncertainty on the position, we have
σi � h̄/(2σp), where σp is the uncertainty on the momentum.
This latter quantity, for a system at thermal equilibrium, can
be estimated with the equipartition theorem if we have that
kBT is much greater than the energy separation between the
system quantum levels. This is what happens in macroscopic
devices that work at room temperature. Since the equipartition
gives a finite value for σp, the uncertainty principle then sets a
maximum accuracy on the position. This means that for a given
system, the probability distribution of the relevant degree of
freedom cannot be shrunk arbitrarily (see Appendix C) [25].
Since Qm in Fig. 5(b) is a monotone function, we have that
Qm reaches a finite maximum value for the minimum allowed
σi .

The existence of a minimum σi has a more important
consequence: it sets a limit on our capability to preserve a
given memory forever. This is apparent when we use Eq. (1)
to explicitly write

t = tR ln(1 − PE)/ ln(1 − P0). (8)

Once we set PE and select a finite tR , we can make t as large as
we want by properly selecting P0 small enough. However, the
existence of a finite minimum σi implies that P0 can never be
smaller than a nonzero minimum value, thus t reaches a finite
maximum at best. To estimate such a maximum t in practical
memories, we consider a micromechanical memory device
such as the one in Ref. [12]. If we assume the distance between
the two wells xm = 1×10−9 m and a refresh period tR =
6.6×10−3 s, we have that the minimum σi = 9.6×10−20 m.
If we set PE = 1×10−6, then the maximum value for t is
approximately two years. On the other hand, if we set PE =
1×10−4, then the maximum time t is approximately 200 years.

Finally, we briefly discuss the role of the protocol time tp . As
we have seen above from the experiment, the minimum funda-
mental bound Qm can be reached only in the quasistatic regime
where tp is non-negligible. This condition sets a minimum
value for tR , such that tR � tp, and prevents the possibility to
perform the experiment at zero energy expenditure. Moreover,
for any finite tp, frictional losses add to the minimum refresh
cost Qm, as is clearly visible from the experimental data in
Fig. 4(a).

In order to identify a general estimate of the overall energy
cost with a finite tp, for a given choice of PE , t , and tR , we
use the formal tools developed in Refs. [11,26,27] to obtain a
final condition of the protocol with the desired value of σi . The
results are shown in the inset of Fig. 5(a). There we see that
the dissipated energy Qm is an inverse function of tp, and that
finite protocol times increase the energetic cost to refresh one
bit by orders of magnitude with respect to the minimum cost
prescribed by Eq. (7).

In conclusion, we studied the energy cost associated with
memory preservation. We have introduced a physical model
for the refresh procedure and realized an experiment in order
to measure the amount of work performed during the refresh
operation. Our study indicates that, in principle, we can
preserve a digital memory for a given finite time with a given
error probability while spending an arbitrarily little amount
of energy. This is accomplished with refresh procedures that
are performed arbitrarily often [Fig. 5(a)] and/or arbitrarily
close to thermal equilibrium [Fig. 5(b)]. In practical cases,
however, the existence of frictional forces introduces a lower
limit on the refresh interval tR � tp and this imply a nonzero
minimum energy expenditure [Fig. 5(a), inset]. We have also
shown that by the moment that the Heisenberg uncertainty
principle implies the existence of a minimum width for the
initial probability density of the memory device, any refresh
strategy will inevitably fail after a finite time.
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the European Commission (H2020, Grant Agreement No.
732631, OPRECOMP, FPVII, Grant Agreement No. 318287,
LANDAUER and Grant Agreement No. 611004, ICT- Energy)
and Office of Naval Research Global Grant No. N00014-11-
1-0695.

APPENDIX A: COMPUTATION OF FIG. 2

To compute Fig. 2, we take

p(x,0) =
exp

[− (x−1)2

2σ 2
i

]
√

2πσi

(A1)

as the initial condition for Eq. (3). In particular, σi is such that
p(x,t) broadens inside the right well of U (x) before developing
a clean-cut second peak in the left well of the potential. We
then solve Eq. (3) with the MATLAB pdepe function. With the
solution, we compute

P0(tR) =
∫ 0

−∞
p(x,tR) (A2)
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for different refresh times tR , and then we evaluate the failure
probability

PE = 1 − [1 − P0(tR)]
t

tR (A3)

for different values of tR and t 
 tR . As a last step, we use
a spline fit of PE to sample tR for different values of PE

and t . The results obtained in this way are plotted in Fig. 2.
These results are obtained with T = 1/8, which corresponds to
τk = 5.3×104τw.

APPENDIX B: DERIVATION OF EQS. (5) AND (6)

Here we derive two important equations given in the main
text, namely, Eqs. (5) and (6). We start with Eq. (6). To derive
it, we assume that T � 1. This simplifies the mathematical
description of the system as it implies that the intrawell relax-
ation mechanisms of the system are faster than the interwell
ones. If we are interested in the intrawell mechanism only, then
a satisfactory form for the dimensionless p(x,t) is

p(x,t) = p0(x,t) + p1(x,t), (B1a)

p0(x,t) = P0

exp
[− (x+1)2

2σ (t)2

]
√

2πσ (t)
, (B1b)

p1(x,t) = (1 − P0)
exp

[− (x−1)2

2σ (t)2

]
√

2πσ (t)
, (B1c)

where P0 is, to all effects, constant over time. We substitute
Eq. (B1) in Eq. (3) and then we approximate Eq. (2) with a
harmonic potential by Taylor expanding around x = ±1. This
yields two distinct equations,

∂p0

∂t
− 8

[
p0 + (x + 1)

∂p0

∂x

]
− T

∂2p0

∂x2
= 0, (B2a)

∂p1

∂t
− 8

[
p1 + (x − 1)

∂p1

∂x

]
− T

∂2p1

∂x2
= 0, (B2b)

where we used the fact that p1(x,t) [p0(x,t)] cannot affect
the dynamics of the system in the left [right] well of U (x) if
�U � kBT . Equation (B2) can be combined into∫ ∞

−∞

{
∂p0

∂t
− 8

[
p0 + (x + 1)

∂p0

∂x

]
− T

∂2p0

∂x2

}
(x + 1)2dx,

+
∫ ∞

−∞

{
∂p1

∂t
− 8

[
p1 + (x − 1)

∂p1

∂x

]

− T
∂2p1

∂x2

}
(x − 1)2dx = 0, (B3)

which reduces to

∂σ (t)2

∂t
+ 16σ (t)2 − 2T = 0. (B4)

Equation (B4) describes the time evolution of σ (t) when
intrawell relaxation mechanisms occur. Its analytic solution
for an initial condition σ (0) = σi is

σ (t) =
√

T

8
+ exp (−16t)

(
σ 2

i − T

8

)
, (B5)

which is the dimensionless version of Eq. (6) given in the main
text.

To compute Eq. (5), we recollect that we stated that the
“refresh operation restores a nonequilibrium condition by
shrinking the width of each peak of p(x,t),” without error
corrections. If we assume that the refresh protocol preserves
the symmetry of U (x), then p(x,t) can be written as Eq. (B1)
during the whole refresh procedure. As a consequence, the sole
effect of a refresh operation with duration tp is to transform

p(x,t) = P0(t)
exp

[− (x+1)2

2σ (t)2

]
√

2πσ (t)
+ [1 − P0(t)]

exp
[− (x−1)2

2σ (t)2

]
√

2πσ (t)

(B6)

into

p(x,t + tp) = P0(t)
exp

[− (x+1)2

2σ 2
i

]
√

2πσi

+ [1 − P0(t)]
exp

[− (x−1)2

2σ 2
i

]
√

2πσi

, (B7)

where σ (t) is given by Eq. (B5), P0(t) is fitted from the
numerical solution of Eq. (3) with Eq. (2), and σi = σ (0). We
now use the Gibbs entropy definition,

S(t) = −kB

∫ ∞

−∞
p(x,t) ln p(x,t)dx, (B8)

to compute the entropy variation �S = S(t + tp) − S(t) of the
refresh protocol. Because of the �U 
 kBT assumption, we
have that

�S ≈ −kB

⎧⎪⎨
⎪⎩
∫ ∞

−∞

e
− x2

2σ2
i√

2πσi

ln

⎛
⎜⎝ e

− x2

2σ2
i√

2πσi

⎞
⎟⎠dx

−
∫ ∞

−∞

e
− x2

2σ (t)2

√
2πσ (t)

ln

⎡
⎣ e

− x2

2σ (t)2

√
2πσ (t)

⎤
⎦dx

⎫⎪⎬
⎪⎭, (B9)

which reduces to

�S ≈ kB ln

[
σi

σ (t)

]
. (B10)

By using Eq. (B10) with t = tR , we obtain Eq. (5) presented
in the main text.

APPENDIX C: MINIMUM VALUE FOR σi

We discuss here the existence of the minimum possible
value for σi . First of all, we observe that σi → 0 is a singular
limit in Eq. (B10). This is inconsistent with the third law of
thermodynamics, so there must be a minimum value for σi .
This is given by the Heisenberg uncertainty principle. In the
best-case scenario, this reads

σxσp = h̄

2
, (C1)

where σx (σp) is the uncertainty on the position x (momen-
tum p). According to the equipartition theorem,

σp = m
√

〈v2〉 − 〈v〉2 =
√

mkBT , (C2)
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so we have that

σx = h̄

2
√

mkBT
. (C3)

Equation (C3) sets the minimum possible uncertainty for σx .
Since σi describes the uncertainty of the initial x value, we

therefore have that σi � σiMin = h̄

2
√

mkBT
. The existence of a

σiMin implies that even at t = 0, the probability of error P0 is
greater than zero. Clearly, this does not exclude that one can
have a smaller σi by accepting a larger σp. This would imply
to operate the memory out of the thermal equilibrium, growing
the dissipated energy well above the fundamental minimum.
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