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What’s a YBS?



 
Anna Dari

2

Outline

• Why the YBS?
• Characteristics of the 

heterostructure
• Device fabrication
• How it works
• Problems
• Applictions
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Need for efficient electronic 
switches

Need:
– High electronic speed
– Low power dissipation
– Large range of the potential 

applied values to reduce the 
switch error

YBS can be a solution?
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Charatteristics of the 
heterostructure (1)

• A heterostructure (or heterojunction) is a p-n 
junction realized between two semiconductors 
with different energetic gap between the velency 
and the conduction bands.

• The used semiconductors are different, provided 
that they have similar reticular constants 
(GaAs/AlGaAs, InAs/AlSb, InGaAS/InP)

Substrate

Spacer no dopant

Ga1-xAlxAs “n”  doped in Si

GaAs no dopant
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Charatteristics of the 
heterostructure (2)
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Fabrication

• The transistors with high electron mobility are 
obtained with the MBE technic, based on 
evaporation in vacuum. The technique allows to 
obtain a sequence of different layers.

• Electron-beam lithography and wet-chemical 
etching with a H2O/NH4OH/H2O2 solution were 
used to obtain the Y shape of the device.

• Next, 500 nm thick Au/Ge/Ni layers for ohmic 
contacts were evaporated and annealed.
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Electron Waveguide Y-Branch 
Switch (YBS)

T. Palm and L. Thylén, Appl. Phys. Lett. 60, 237 (1992)

e-

1

2 3

Single mode coherent mode of 
operation: 

Envelope of electron wavefunction 
propagates to either drain depending on the 
direction of electric field across the branching 
region.

 no thermal limit       → promises extreme low-power consumption

 waveguide device    → small is good

 monotonic response → tolerant to fabrication inaccuracies

 Drawback →low current operating condition means low low speed of circuits

T
switch e
V

τ
�≈∆

Required switching voltage in the branching 
region:
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Example (GaAs):
 Sheet carrier concentration 4x1015 m-2

  Interaction length 200 nm

 Theoretically required switch voltage 1 mV

Required switching voltage
T. Palm, L. Thylen, O. Nilsson, C. Svensson, J. Appl. Phys. 74, 687 (1993)

T

YBS
S e
V

τ
�≈∆

Required change in applied gate bias 
required to change the state of the 
YBS:

Sub-thermal switching in YBS just experimentally verified !
L. Worschech et. al., private communication

Contrast with the limit for a FET, that is 50 times 
higher at room-temperature: 

e
TkV BFET

S )10log(=∆
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Electron transport – 
Landauer-Büttiker formalism
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Transmission probability stem  right arm

In coherent regime we can use the Landauer-Buttiker formalism to 
describe the electron transport:

Transmission probability:

Switching parameter:

Identity matrixPotential in the reservoirs

Contact resistence
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Space-charge effects switching
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The Self-Gating Effect
J-O J. Wesström Phys. Rev. Lett. 82 2564 (1999)
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Self-gating effect
• Because of the contact resistence, a 

difference in current will create a 
difference in electrochemical potential 
∆µ23. The current is directed to the 
waveguide with lower µ.

•  ∆µ23 becames the dominant effect

• The fenomenon creates a nonlinearity in 
the conductance between the three leads 
and it can be exploited studing the YBS 
without the gate potential.

• The result is bistability.
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Nonlinear regime: 
self-consistent simulation

Poisson equation

Fully self-consistent simulation tool for 
simulations of electron waveguide 
devices developed.

E. Forsberg, J. Appl. Phys, 93, 5687 (2003)
E. Forsberg and J.-O. J. Wesström, Solid-State. Electron. 48, 1147-1154 (2004).

To solve the equation is needed only
the potential in the 2D plane
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Nonlinear regime
• It works as a multi-mode electron device
• The applied voltage is higher than the linear 

regime to ensure that the device is in a well 
defined state.

• The YBS has low sensitivity for velocity 
differences, so it can operate in the nonlinear 
regime without velocity filtering of the electrons
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• Ballistic Transport 
   – Branch width < Electron free wavelength

 

( )42

2

1
ooC VOVV +−= α

VL=VO VR=-VO

VC

Classical:

Ballistic:

0=CV

(1) PHYSICAL REVIEW B, Vol. 62, No.24, 15 DECEMBER 2000-II

(1)

Nonlinear regime: ballistic 
switching mode

The α sign depend on the
slope of the transmission
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Nonlinear regime: ballistic 
switching mode

• A more quantitative theory is based on the model 
for a YBS as a ballistic cavity, adiabatically 
connected via three point contacts to the reservoirs 

• For symmetric YBS, applying +V and –V to VL and VR 
will always result in negative Vc

• For asymmetric YBS,it is shown that Vc is negative 
for lVl but it has to be greater than certain threshold 
 

• It’s described with the “ballistic switching mode” and 
not with the “self-gating effect”
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…at room temperature
• This reduction of the ballistic switching efficiency 

with increasing temperature and device size is 
correlated to mean-free-path L.  

• The switching can be made more pronounceed 
even at room temperature by using higer bias
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Summarize

YBS has three modes of operation 
• Single mode transport

– No thermal limit to switch voltage
• Self-gating operation

– Switching based on space charge effects
– Bi-stable mode of operation
– (single mode operation)

• Ballistic switching 
– Multimode mode of operation
– Room temperature operation 

demonstrated 



 
Anna Dari

18

Problems
• The tip of the Y reflects the wave pocket, but it 

can be reduced below 8% adding a transverse 
field

• Increasing the brancing angle makes the Y more 
sensible to the different wave pocket velocities

• Scattering is caused by abrupt cheanges in the 
geometries and boundary roughness

• At low temperature, there are fluctuations in the 
transmission due to the electron scattering in 
the junction region

• The breakdown of the quantized conductance is 
also due to device length longer then the 
characteristic length of the fluctuations

• Random position of ionized-impurities in doped 
heterostructure give rise to a random potential. 
The fluctuations are relevants if the average 
density of electrons is lowered (from 2DEG to 
QW)
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Quantized conductance
• Let’s assuming a narrow conductor. Due to the 

lateral confinement, 1D subbands are formed
• Current carried left to right is:

e
M

h

e
I

)(2 21
2 µµ −=

• Conductance for M channel is

M
h

e
G

22=

• In  the nonlinear regime, over a cartain voltage VBR, 
  the quantization breakdownAlso at room temperature is visible this effect, in 
the condition of L<<le
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Logic Based on Y-branch 
Switches

Inverter

NAND gate using asymmetrical 
Y-branch switches
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Electrical symbol and 
possible states

T. Palm and L. Thylén, J. Appl. Phys. 79 8076 (1996)
E. Forsberg, unpublished
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Reversible YBS logic
E. Forsberg, Nanotechnology 15, 298 (2004).

A A '

B B '

C C '

111111

101011

011101

001001

110110

010010

100100

000000

C’B’A’CBA
ccNOT (Fredkin) gate


