Software and energy aware computing

Kerstin Eder

Design Automation and Verification, Microelectronics Verification and Validation for Safety in Robots, Bristol Robotics Laboratory
Bristol
The University of Bristol

- UoB founded in 1909
 - The first higher education institution in England to admit women on an equal basis to men. 😊

- Top 30 universities globally
 (QS World University Rankings)

- 6 Faculties

- ~14,000 students, 2,000 in FEN

- Computer Science in FEN

- EACO workshops and research to advance the state of the art in Energy Aware COmputing
Software and energy aware computing

More power to software developers!

Kerstin Eder

Design Automation and Verification, Microelectronics
Verification and Validation for Safety in Robots, Bristol Robotics Laboratory
Overview

- Introduction and Motivation
 - Energy consumption of Computing
 - Software vs Hardware
Overview

- Introduction and Motivation
 - Energy consumption of Computing
 - Software vs Hardware
Overview

- Introduction and Motivation
 - Energy consumption of Computing
 - Software vs Hardware
 - Energy Transparency

- Measuring the energy consumption of software
 - Demonstration with hands-on session by Steve Kerrison

- Energy modeling

- Fundamentals of static analysis of software
- Static analysis and optimization
Learning Objectives

- Why software is key to energy efficient computing
- What energy transparency means and why we need energy transparency to achieve energy efficient computing
- How to measure the energy consumed by software
- How to estimate the energy consumed by software without measuring
- How to construct energy consumption models
Introduction and Motivation

Pictures taken from the Energy Efficient Computing Brochure at:
Electricity Consumption (Billion kWh, 2007)

<table>
<thead>
<tr>
<th>Country</th>
<th>Electricity Consumption (Billion kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>3923</td>
</tr>
<tr>
<td>China</td>
<td>3438</td>
</tr>
<tr>
<td>Russia</td>
<td>1023</td>
</tr>
<tr>
<td>Japan</td>
<td>925</td>
</tr>
<tr>
<td>Cloud computing</td>
<td>623</td>
</tr>
<tr>
<td>India</td>
<td>568</td>
</tr>
<tr>
<td>Germany</td>
<td>547</td>
</tr>
<tr>
<td>Canada</td>
<td>536</td>
</tr>
<tr>
<td>France</td>
<td>447</td>
</tr>
<tr>
<td>Brazil</td>
<td>404</td>
</tr>
<tr>
<td>UK</td>
<td>345</td>
</tr>
</tbody>
</table>

http://www.greenpeace.org/international/en/publications/Campaign-reports/Climate-Reports/How-Clean-is-Your-Cloud/
“Despite improved energy efficiency, energy consumption through electronic devices will triple until 2030 because of a massive rise in overall demand.”
Crowds in St. Peter’s Square

2005

2013
Free mobile apps 'drain battery faster'

Free mobile apps which use third-party services to display advertising consume considerably more battery life, a new study suggests.

Researchers used a special tool to monitor energy use by several apps on Android and Windows Mobile handsets.

Findings suggested that in one case 75% of an app's energy consumption was spent on powering advertisements.

Report author Abhinav Pathak said app makers must take energy optimisation more seriously.

Energy Aware Computing
Energy Efficiency of ICT

arChitecture

Blocks

gAtes
A historical perspective
(based on an inspiring talk by Steve Furber)
The Baby (1948)

- filled a medium-sized room
- executed 700 instructions per second
The ARM968 (2005)

- fills 0.4mm^2 of silicon
- executes $200,000,000$ instructions per second
- $\sim300,000$ times more than the Baby!
~60 years of progress

- Baby, 1948:
 - filled a medium-sized room
 - used 3.5 kW of electrical power
 - executed 700 instructions per second

- ARM968, 2005:
 - fills 0.4mm2 of silicon (130nm)
 - uses 20 mW of electrical power
 - executes 200,000,000 instructions per second
Energy efficiency

- Baby:
 - 5 Joules per instruction

- ARM968:
 - 100 pico Joules per instruction

(James Prescott Joule born Salford, 1818)
Energy efficiency

- **Baby:**
 - 5 Joules per instruction

- **ARM968:**
 - 0.000 000 000 1 Joules per instruction

50,000,000,000 times better than Baby!

(James Prescott Joule born Salford, 1818)
10 more years of progress

- **Baby, 1948:**
 - filled a medium-sized room
 - used 3.5 kW of electrical power
 - executed 700 instructions per second

- **ARM968, 2005**
 - fills 0.4mm2 of silicon (130nm)
 - uses 20 mW of electrical power
 - executes 200,000,000 instructions per second

- **ARM Cortex-A35, 2015**
 - smallest area configuration <0.25mm2
 - uses less than 4 mW of electrical power at 100 MHz
 - executes ~210,000,000 instructions per second
Hardware Design

- Power management largely in domain of Hardware Design
 - Considerations to minimize/optimize
 - Dynamic (switching) and static (leakage) power
 - On-chip power management
 - Modes: on, standby, suspend, sleep, off

- Development of low power electronics

Where can the greatest savings be made?
Greater Savings at Higher Levels
LOW POWER

Lack of software support marks the low power scorecard at DAC

One of the panels at the Design Automation Conference (DAC), which took place in California in early June, set out to get an idea of how well the industry is doing at delivering lower-power systems.

It is becoming clear, writes Chris Edwards, that the system level is currently the missing link.

Processes can deliver some gains — and Globalfoundries’ Andrew Brotman was able to outline some of the features that the foundry has put into its recently launched low-power high-k, metal gate (HKMG) process.

FinFETs should bring power down as those processes become available, although they are not the only options. But if the software keeps cores active for no good reason, the lower switching power per bit processed won’t deliver a realised saving.

In his keynote speech Gadi Singer, vice-president IAG and general manager of the SoC enabling group at Intel Corporation, said that with limited software support, dedicated low-power circuitry could save maybe 20% in a typical multimedia-oriented core.

Make the software controlling it better at controlling the power states and that difference could be three to five times.

During an afternoon panel discussion Ambrose Low, director of design engineering at Broadcom said: “We have hundreds of knobs in the hardware to turn power down.

“The question is whether we can take the actual use-cases into consideration and optimise the software to power the logic circuits down. We still have a long way to go.”

Ruggiero Castagnetti of LSI argued that the desire to do more in software will grow.

“As we see power limits and targets becoming unachievable, customers will be willing to go to that extra step. There is a challenge that needs to be addressed and we have to do more on the systems side,” Castagnetti said.

“We should put a challenge to the software designers to see how much power they can save,” he added.

Chris Edwards writes the Low-Power Design Blog (enabled by Mentor Graphics) on ElectronicsWeekly.com

www.electronicsweekly.com/ew-blogs/
Huge advances have been made in power-efficient hardware.

BUT – potential energy savings are wasted by

- software that does not exploit energy-saving features of hardware;
- poor dynamic management of tasks and resources.
Energy Efficiency of ICT

- Algorithms
- Software
- Compilers
- Drivers
- Architecture
- Blocks
- Gates
The Focus is on Software

- Software controls the behaviour of the hardware
 - Algorithms and Data Flow
 - Compiler (optimizations)
 - Traditional SW design goals: performance, performance, performance
The Focus is on Software

- Software engineers often “blissfully unaware”
 - Implications of algorithm/code/data on power/energy?
 - Power/Energy considerations
 - at best, secondary design goals

- BUT the biggest savings can be gained from optimizations at the higher levels of abstraction in the system stack
 - Algorithms,
 - Data and
 - SW
6.3. SOFTWARE DESIGN FOR LOW POWER

KAUSHIK ROY AND MARK C. JOHNSON
School of Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana, U.S.A.

1. Introduction

It is tempting to suppose that only hardware dissipates power, not software. However, that would be analogous to postulating that only automobiles burn gasoline, not people. In microprocessor, micro-controller, and digital signal processor based systems, it is software that directs much of the activity of the hardware. Consequently, the software can have a substantial impact on the power dissipation of a system. Until recently, there were no efficient and accurate methods to estimate the overall effect of a software design on power dissipation. Without a power estimator there was no way to reliably optimize software to minimize power. Since 1993, a few researchers have begun to crack this problem. In this chapter, you will learn
Aligning SW Design Decisions with Energy Efficiency as Design Goal

Key steps*:

- “Choose the best algorithm for the problem at hand and make sure it fits well with the computational hardware. Failure to do this can lead to costs far exceeding the benefit of more localized power optimizations.
- Minimize memory size and expensive memory accesses through algorithm transformations, efficient mapping of data into memory, and optimal use of memory bandwidth, registers and cache.
- Optimize the performance of the application, making maximum use of available parallelism.
- Take advantage of hardware support for power management.
- Finally, select instructions, sequence them, and order operations in a way that minimizes switching in the CPU and datapath.”

How much?
Energy Transparency

Transparency is The New Green.
Energy Transparency

Information on energy usage is available for programs:

- ideally without executing them, and
- at all levels from machine code to high-level application code.
Half of this pizza provides...

- **cal**: 617
- **fat**: 23.8g
- **total sugars**: 8.7g
- **salt**: 2.0g
- **sat fat**: 13.1g

Transparency
Transparency

280 kWh/annum

155 L

54 L

38 dB

2010/1060
Complimenti, con la scelta del treno hai contribuito a risparmiare al pianeta emissioni di CO₂
Ad esempio, confronta i kg di CO₂ emessi in media* per un passeggero che viaggia sulle tratte:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Napoli - Milano</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>76</td>
</tr>
<tr>
<td>Roma - Venezia</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>52</td>
</tr>
</tbody>
</table>

* Dati da elaborazione ENEA (riferimento anno 2008)

** Valore risparmiato per passeggero rispetto alla media tra auto ed aereo
Energy transparency enables a deeper understanding of how algorithms and coding impact on the energy consumption of a computation when executed on hardware.
Learning Objectives

✓ Why software is key to energy efficient computing
✓ What energy transparency means and why we need energy transparency to achieve energy efficient computing
 ▪ How to measure the energy consumed by software
 ▪ How to estimate the energy consumed by software *without* measuring
 ▪ How to construct energy consumption models
Learning Objectives

✓ Why software is key to energy efficient computing
✓ What energy transparency means and why we need energy transparency to achieve energy efficient computing
 ▪ How to measure the energy consumed by software
 ▪ How to estimate the energy consumed by software *without* measuring
 ▪ How to construct energy consumption models
Measuring the Energy Consumption of Computation
Measuring Power

Measure voltage drop across the resistor

\[I = \frac{V_{\text{shunt}}}{R_{\text{shunt}}} \] to find the current.

Measure voltage at one side of the resistor

\[P = I \times V \] to calculate the power.
The Power Monitor

Amplifier

ADC

Results

Amplifier

ADC

Results
Measuring Power

Measure voltage drop across the resistor

\[I = \frac{V_{\text{shunt}}}{R_{\text{shunt}}} \]

to find the current

Measure voltage at one side of the resistor

\[P = I \times V \]

to calculate the power

Repeat frequently, timestamp each sample
Measuring Energy

![Diagram showing energy measurement over time and power.](#)
How much data?

Currently 500,000 Samples/second
6,000,000 S/s possible in bursts
The Showstopper 😞
Open Energy Measurement Board

http://mageec.org/
Open Energy Measurement Board

http://mageec.org/
MAGEEC Energy Measurement Kit

£43.50

Add to cart

The MAGEEC WAND is capable of measuring energy consumption at 3 independent points and with simultaneous measurement of targets at 2,000,000 samples/second.

The platform is comprised of an ARM Cortex M4-based STM32F4DISCOVERY board plus a custom shield, which is connected via USB to a host computer.

The shield, STM32F4DISCOVERY firmware, and a Python framework and applications, were developed as part of the MAGEEC project.

Hardware has been made available to members of the MAGEEC project, other research groups and as part of a workshop at FOSDEM 2014. Embecosm have funded the production of a limited number of kits which are now being made generally available at cost. There are no plans to produce any more once these are sold.

For further details, including a bill of materials, see the WAND Kit GitHub repository.

http://groundelectronics.com/products/mageec-energy-measurement-kit
Energy Measurement
A hands-on session by Steve Kerrison
Summary: Energy Measurement

- We can directly measure the energy consumed during the execution of a program.
- In most cases, specialized hardware and modifications to hardware are required to enable measurement.
- The accuracy of the measurements depends on the sampling frequency, on the measuring hardware and on the characteristics of the target you want to measure.
BREAK
(with the next two slides serving as screen cover during the break)
Energy Aware Computing (EAC) research at the UNIVERSITY OF BRISTOL includes both Computer Science and Electronic Engineering, with significant cross-departmental expertise and collaboration in energy monitoring and modelling, static analysis and compilers, processor architectures and embedded multi-core system design.

The EAC Workshop series at the University of Bristol brings together academia and industry to identify and address intellectual challenges in Energy Aware Computing with the aim to reduce the energy consumption of computation. Topics of EAC Workshops span the entire system stack from application software and algorithms, via programming languages, compilers, operating systems, instruction sets and micro architectures to the design of hardware.

The UNIVERSITY OF GLASGOW’s James Watt Nanofabrication Centre use micro- and nano-technology research and manufacturing facilities to develop technology including Terahertz optics and Silicon nano-wires, healthcare applications and energy harvesting. The Centre coordinates the Generate Renewable Energy Efficiently using Nanofabricated Silicon (GREEN Silicon) project, where the Seebach effect is used to produce thermoelectric generators using Si/SiGe heterobipolar technology, resulting in more efficient energy harvesting.

University of Glasgow contact: Douglas Hall.

TYNDALL NATIONAL INSTITUTE is one of Europe’s leading centres in ICT research and development. Applying an “atoms to systems” philosophy, energy research in Tyndall includes advanced concepts for low-power computing and efficient power supplies, energy storage and harvesting solutions, and technologies for wireless sensor networks applied to energy and resource optimisation in buildings and factories.

Tyndall coordinates a number of projects in the ICT Energy field including the MARPOWER, SNAPS, SQUIRE, PowerSWIPE and DEEPEN projects.

Tyndall National Institute contact: Giorgio Fasina.

The goal of the ICT-Energy project is to create a coordination activity among researchers working on energy reduction in ICT from Nanoscale Devices to Exascale Computing.

By bringing together the Toward Zero-Power ICT community with the AMIECC (MINimizing Energy Consumption of Computing) community this project enables a concerted effort to lower energy consumption across the ICT sector.

Our aim is to assess the impact of existing research efforts and propose measures to increase the visibility of ICT energy related initiatives to the scientific community, targeted industries and to the public at large through the exchange of information, dedicated networking events, education and media campaigns.

University of Perugia contact: Luca Gammaitoni

The UNIVERSITY OF PERUGIA’s Noise In Physical Systems (NIPS) Lab studies the effects of fluctuations in electrical fields, heat, sound and other mediums. This has led to the development of novel energy harvesting and noise sensing devices.

The NIPS Laboratory coordinates the LANDAUER project where the operation of basic physical switches below the Landauer limit is studied to investigate conceptually new devices and novel computing paradigms with radically improved power efficiency.

University of Perugia contact: Luca Gammaitoni

The UNIVERSITY OF HEIDELBERG’s Engineering Mathematics and Computing Lab (EML) applies numerical analysis to optimise the performance and energy consumption of High Performance Computing (HPC) as used in leading-edge scientific programming. The EML coordinates the EXAEREGUE project which aims to drastically reduce the energy consumed in HPC by developing advanced power consumption monitoring and profiling, and designing a smart, power-aware scheduling technology for HPC.

University of Heidelberg contact: Vincent Renner

At the HITACHI Cambridge Laboratory (HCL) researchers investigate new designs of micro and optoelectronic devices, based on entirely new concepts, such as single electron logic circuits. Revolutionising the electronic devices used to power information technology has the potential to cut energy consumption by orders of magnitude.

HCL coordinates the Towards Low Power ICT (TOLIP) project which aims at the realisation of novel low power devices (single electron transistors and single atom transistors), including implementation technologies and the corresponding design architectures.

University of Copenhagen contact: Adam Cirola Renouf
If you want an ultimate low-power system, then you have to worry about energy usage at every level in the system design, and you have to get it right from top to bottom, because any level at which you get it wrong is going to lose you perhaps an order of magnitude in terms of power efficiency.

The hardware technology has a first-order impact on the power efficiency of the system, but you've also got to have software at the top that avoids waste wherever it can. You need to avoid, for instance, anything that resembles a polling loop because that's just burning power to do nothing.

I think one of the hard questions is whether you can pass the responsibility for the software efficiency right back to the programmer.

Do programmers really have any understanding of how much energy their algorithms consume?

I work in a computer science department, and it's not clear to me that we teach the students much about how long their algorithms take to execute, let alone how much energy they consume in the course of executing and how you go about optimizing an algorithm for its energy consumption.

Some of the responsibility for that will probably get pushed down into compilers, but I still think that fundamentally, at the top level, programmers will not be able to afford to be ignorant about the energy cost of the programs they write.

What you need in order to be able to work in this way at all is instrumentation that tells you that running this algorithm has this kind of energy cost and running that algorithm has that kind of energy cost.

You need tools that give you feedback and tell you how good your decisions are.

Currently the tools don't give you that kind of feedback.

February 2010, acmqueue Interview with Steve Furber
The designer of the ARM chip shares lessons on energy-efficient computing at: http://queue.acm.org/detail.cfm?id=1716385

Steve Furber