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Vibrations energy harvesting

Dynamical model

mx = — av() -y —c(x,V)+C,
dx

Represents the Energy stored

Represents the dissipative force

Represents the reaction force due to
the transduction mechanism

Represents the input force



Vibrations energy harvesting

/.. dU(x) .
mx = — —vx —c(x,V)+
— dx 4 \(/) gz
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Details depend on the physics...

Equations that link the vibration-induced displacement with the Voltage



Vibrations energy harvesting

Transduction mechanisms

Piezoelectric: dynamical strain is
converted into voltage difference.

Capacitive: geometrical variations
induce voltage difference

Inductive: dynamical oscillations
of magnets induce electric current in
coils




Vibrations energy harvesting

Transduction mechanisms: focus on Piezo

Piezoelectric: dynamical strain is converted into voltage
difference.
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Noise energy harvesting

Transduction mechanisms

Piezoelectric: dynamical strain is converted into voltage difference.

mx = — dU(X) — )/x — KVV + g That for a beam are:
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The Physics of piezo materials

Focus on Cz 6



The random character of kinetic energy

CZ Represents the vibration (force)

Random vibrations / noise

Thermal noise (NOT POSSIBLE AT EQUILIBRIUM!!!)
Acoustic noise
Seismic noise

Ambient noise (wind, pressure fluctuations, ...)
Man made vibrations (human motion, machine vibrations,...)

All different for intensity, spectrum, statistics

How can we harvest them ?



Noise energy harvesting

Linear systems

1

When U(x) = Ekxz it is called a linear system

Linear systems have some interesting features... (and
engineers like them most!!!)

1) There exist a simple math theory to solve the equations
2) They have a resonant behaviour (resonance frequency)
3) They can be “easily” realized with cantilevers and pendula

N\




Vibrations energy harvesting

Linear systems

Transfer Function
*

>
input signal

>
output response

Linear oscillstor
The transfer function is a math function of the frequency, in the complex
domain, that can be used to represent the performance of a linear system

For a linear system the transfer function presents one or more peeks

corresponding to the resonace frequencies and thus it is efficient mainly when
the incoming energy is abundant in that regions...

This is a serious limitation when you want to build a small energy harvesting
system...



Vibrations energy harvesting

For two main reasons...

( 1 ) the frequency spectrum of available vibrations instead of being
sharply peaked at some frequency is usually very broad.
(See Igor Neri presentation at the workshop).
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The frequency spectrum of available vibrations is particularly rich
(2) in energy in the low frequency part... and it is very difficult, if not
impossible, to build small low-frequency resonant systems...

W |
-1
Resonant frequency ~ [S ]

* MEMS cantilever 100 x 3 x 0.1 ym3, f,=12 kHz
* NEMS cantilever 0.1 x 0.01 x 0.01 pm?3, f,=1.2 GHz
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Let’s look an example...




Description of the resonator design

The resonator design is a square shaped block of single crystal silicon with
dimensions of 320x320x28 um”3 (design H1). Its main resonance mode is the so
called square extensional (SE) resonance, which is characterized by its zoom-
in/zoom-out oscillation. The resonance is excited by a piezoelectric AIN thin film on
top of the resonator block. The electrically conductive (p-doped) silicon block acts as
the bottom electrode, and a molybdenum thin film has been patterned to provide the
top electrode. See reference [1] for a general description of the SE resonator.
Reference [2] discusses piezoelectric excitation of the SE resonance mode.

Figure 3 shows how the resonator is recommended to be connected.
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Figure 3: Electrical connection of the resonator.
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Lm Rm Cm

N W eu

parameter |value unit
Rm 128.9606 |Ohm
Cm 1.01E-14 |F
Lm 0.013691 |H
CO 3.00E-11 |F

fO 13.5 MHz
Q 9000 1
k2eff 0.04 %
C1 <1e-12 F
C2 <1e-12 F

Table 1: equivalent circuit parameters (and their derivatives).



AccY Spot Magn Det WD
15.0kv 5.0 2039x SE 136

AccV Spot Magn Det WD |
150kv 50 26bx SE 135




Voltage sinusoidal excitation switched off at zero
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Voltage sinusoidal excitation switched off at max
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Amplitude (V)
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Mechanical relaxation time (t_,) in vacuum

(open circuit)
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From the model for a linear oscillator:

The voltage transfer function is:

1 wk I k+ 7+ kk,
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The analytic result for the Q is:

0 = w, w, is the resonance frequency and Aw is the bandwidth (full
Aw width when the output voltage is Vm% )
V2
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Considering:

m=10"° g
k=7.195-10° N/m
k,=2 N/V
k=2000 V/m
Ry=8-10° €
Co=24-10""> F
v=m-4.16-10" s’

© :Keﬁd31a
b2tk
:tpd31YpEkl
‘ ae



Quality Factor as a function of the Load resistence
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Quality Factor vs Resistive load
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Vibrations energy harvesting

Whish list for the perfect vibration harvester

1) Capable of harvesting energy on a broad-band
2) No need for frequency tuning
3) Capable of harvesting energy at low frequency

-

1) Non-resonant system
2) “Transfer function” with wide frequency resp.
3) Low frequency operated



Noise energy harvesting

NON-Linear mechanical oscillators

1) Non-resonant system
2) Wide frequency resp.
3) Low frequency operated

Example... Lsh
.......... - | A

Inverted pendulum L, | ™

4
s

deflection, -~

bimorph
piezo-bender

UID.AJS

F. Cottone, PhD Thesys, Perugia 2007



Statistics

e “1D” Statistics: (24 Order Cumulants, 15t Order Spectra)

— Correlation: ny(t)=£oooox(7))’(t+7)d7 had X(f) Y*(f)=Sxy(f)

— Power Spectral Density: G0 = X(f) X(/)=5..(/)

S, (/)
— Coherence: ny(f)=\/5 (£) 5., (f)

2x

 Tells us power and phase coherence at a given
frequency



Statistics (more complicated...)

e “2D” Statistics: (3rd Order Cumulants, 2nd Order Spectra)

— Bicumulant:
Cm(t,t’)=f_°;x(r)y(t+r)z(t’+r)d1r = X(H)Y(H)Z(fi+£)=S..(f. %)
— Bispectral Density: ¢, () < x(£)X(£) X(£ +£)=5S.(f.£)
S, )= [ €m0

S,.(fu12)
S (SIS (LS (fi + 1)

— Bicoherence: Cm(f)w

 Tells us power and phase coherence at a coupled
frequency



Statistics (more complicated...)

The Spectrogram (STFT square modulus):
2

S (t,v) =

[ x@h" @ - e ™ dv

Represents the signal energy in the time-frequency domain centred in (t,v).

eTo analize the system linearity bispectrum and bicoherence need to be taken into
account:

oIf S,,=0 the process is Gaussian and linear
oIf S;, = 0 the process is not Gaussian and

eif c;, is constant - the process is linear
eif 5, is not constant - the process is not linear
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Spectrogram:
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Let's look at an example of
non-linear oscillator:

the Duffing Oscillator

¥+0x + Bx +ox’ = ycoswt

1 1
U(x)=—px> +—ox”
(x) =3 fx”+7



A two springs system

« A mass is held between two
springs.
— Spring constant k
— Natural length /

« Springs are on a horizontal
surface.

— Frictionless
— No gravity




Transverse Displacement

* The force for a displacement
Is due to both springs.

— Only transverse component
— Looks like its harmonic

F= -2k(\/12 a2 1) $ind

=—2k(\/lz 2-1) X

1
AL+ x%/ 1

= —2kx(1 -



Purely Nonlinear

The force can be expanded as
a power series near

equilibrium. P —2kl);(1— 1 ]

— Expand in x// A1+ X2/ 1

The lowest order term is non- o\
—kl(—) +..

linear. =

Quartic potential
— Not just a perturbation k



Mixed Potential

 Typical springs are not at
natural length.

— Approximation includes a
linear term




Quartic Potentials

* The sign of the forces influence the shape
of the potential.

double well




Driven System

« Assume a more complete, 3
realistic system. mx = —fx — kx —kox” + f coswt
— Damping term
— Driving force Y+ yc+o.x+am.x’ = fcosmt
 Rescale the problem:
— Set t such that wy? = kim =1
— Set x such that ka/m =1

- This is the Duffing equation X+yk+x+x = fcoswt



Steady State Solution

* Try a solution, match terms
x(t) = A(w) cos[wt — O(w)]

¥+yk+x+x = fcoswt

A(l - w*)cos(wt - 0) — Ayw sin(wt — 0) + A’ cos’ (wt — 0) = f coswt

trigonometric cos’ (wt — ) = 3 cos(wt —0) + L cos3(wt — 6)

BETIHEE fcoswt = fcosOcos(wt—0)— fsinOsin(wt—06)
[A(l-w® +2 A%) - f coswt]cos(wt — B) feoswt =A(l—w” +2 A?)
+H-Ayw + f sinwt]sin(wt — 0) fsinwt = Ayw
+1 A cos3(wr - 0) L A% cos3(wt —0) =0

=0



Amplitude Dependence

Find the amplitude-frequency
relationship.

— Reduces to forced harmonic
oscillator forA— 0

fr=A11-0%) +(yo)’]

Find the case for minimal
damping and driving force.

— f, yboth near zero
— Defines resonance condition

4

f2 =A2[(1—(1)2+%A2)2+)/20)2]

0= A[(1 - ” + 2 A>)? +0]
O=1-w’+3A°

A(w) = 4@ 1)




Nonlinear Resonance Frequency

Linear
oscillator

The resonance frequency of
a linear oscillator is
independent of amplitude.

The resonance frequency of
a Duffing oscillator increases
with amplitude.



dizplacerment

... brings to hysteresis

o o
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A Duffing oscillator behaves
differently for increasing and
decreasing frequencies.

— Increasing frequency has a
jump in amplitude at w,

— Decreasing frequency has a
jump in amplitude at o,

This is hysteresis.



Nonlinear Resonance

(in general...)

Nonlinear resonance seems not to be so much different
from the (linear) resonance of a harmonic oscillator. But
both, the dependency of the eigenfrequency of a nonlinear
oscillator on the amplitude and the nonharmoniticity of the
oscillation lead to a behavior that is impossible in harmonic
oscillators, namely, the foldover effect and superharmonic
resonance, respectively.

Both effects are especially important in the case of weak
damping.



The foldover effect

The foldover effect got its name from the bending of the resonance peak
in @ amplitude versus frequency plot. This bending is due to the
frequency-amplitude relation which is typical for nonlinear oscillators.

g =9.81m/sec’,l =lm,y = 0.4sec” - Foldover effect for a pendulum
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The superharmonic resonance

Nonlinear oscillators do not oscillate sinusoidal.

Superharmonic resonance is simply the resonance with one of this higher
harmonics of a nonlinear oscillation. In an amplitude/frequency plot appear
additional resonance peaks. In general, they appear at driving frequencies
which are integer fractions of the fundamental frequency.
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Bistable Duffing

In case of a bistable oscillator the frequency response for an overdamped system
is highly spread in the low frequency region.

100 T
10 3v,
S(v) Sv,,
1
0.1
10 100
v {(Hz)

Gammaitoni et al. Reviews of Modern Physics 1998



Noise energy harvesting

NON-Linear mechanical oscillators

Yy NON-Linear Inverted pendulum
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Noise energy harvesting

NON-Linear mechanical oscillators

micrometric stage xy

Piezo beam

layers

.- polar opposing magnets

.steel inertial mass

CCD Laser

displacement sensor

_~-magnets

excitation coils

Ch1 displ. “x”

Ch3 noise
4 layers piezo beam

=

Xyz stage

s R P

micrometric

Power Low noise A
Amplifier [<— band pass NI DAQ
T filter 16bit 1Ms/s
clamp | A ,\
h
vout ||R, Ch2 voltage
1 across load



Noise energy harvesting

NON-Linear mechanical oscillators

e A=Bmm
== A=7mm
0.9 ‘\ ——A=10mm ii
_0al \ ---A=AC=11.2mm i
) ) == A=15mm Y
e a0 7
w— 0.7} ;
21\ _
0.6/
>
-
= 0.5

©
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http://www.nipslab.org/node/1676

Nonlinear Energy Harvesting, F. Cottone; H. Vocca; L. Gammaitoni
Physical Review Letters, 102, 080601 (2009)



Noise energy harvesting

NON-Linear mechanical oscillators

Nonlinear Energy Harvesting, F. Cottone; H. Vocca; L. Gammaitoni
Physical Review Letters, 102, 080601 (2009)



X

(mm)

rms
N Wl ) N 0

Noise energy harvesting

NON-Linear mechanical oscillators
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Nonlinear Energy Harvesting, F. Cottone; H. Vocca; L. Gammaitoni , Physical Review Letters, 102, 080601 (2009)



Noise energy harvesting

Non-linear systems

U(X) = _Eax + —bx4 Duffing potential
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L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)



Noise energy harvesting

Non-linear systems

U(x) = _laxz + lbx‘l Duffing potential
2 4
10 14
1.2
byax =

o 4D log(rp)
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L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)
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I Excitation
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Noise energy harvesting

Only bistability???

Considering a Duffing oscillator: X + 2§eﬂx + X+ /3363 = F(?)

Seﬁr is the effective damping ratio for both electrical and mechanical damping

/3 > () is astiffness nonlinearity coefficient
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Power spectral density curves of x(t) under
White Gaussian excitations of a fixed
spectral density.
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Excitation Frequency

Steady-state frequency response curves under
harmonic excitations of a fixed frequency

M.F. Dagagq, Journal of Sound and Vibration 329 (2010) 3621-3631



Noise energy harvesting

For an electromagnetic duffing-type harvester, (similar to the one shown before):

ii+2Ew it +w’u+0i+ pu’ = F(1) under a Gaussian White noise :

Oit = iR (E(DE(1,)) = 2m08(t — 1,)

u represents the position of the mass, & is the mechanical damping ratio, w, is the
natural frequency, S is a cubic nonlinearity coefficient, fis an electromechanical
coupling coefficient, R is the load resistance, and i is the current passing through the
load.

, 6o Not dependent on the
The expected value of the power (mean power) is: (P)=— . .

E.r nonlinear coefficient
For small nonlinearities (small ) and various “colored” noises the mean output power
decreases as the nonlinearity increases indicating that the nonlinearity does not
improve the output power even when the excitations are Colored.

More details on: M.F. Daqaq, Journal of Sound and Vibration 329 (2010) 3621-3631



Noise energy harvesting

Only bistability???

A more general monostable potential... U(X) — axzn with a>0
n=12,..

In an exponentially correlated noise
with correlation time t:

=

(E(OEt))=0"e T

There exists a threshold amplitude a,,:

Above which the nonlinear system
outperforms the linear one.

L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)
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Varying the noise amplitude
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Once o and a are fixed the choice of a
linear (n = 1) or nonlinear potential (n
. 2) can be made in order to maximize

X, and consequently the power

obtained at the device output.
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In collaboration with
CEA-Leti we are
investigating
ucantilevers
dynamics




Scheme of the cross section of one cantilever

Top 0.05um

PZT 0.12 pum
Bottom 0.1um

Typical electrical features
* Max voltage sustainable: 5-7V

e e31PZT =-5C/m?
e Dielectric constant PZT: 1000
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Conclusions

Non resonant (i.e. non-linear) mechanical oscillators can outperform resonant
(i.e. linear) ones

Non-linear systems are more difficult to treat but more interesting...

Bistability is not the only nonlinearity available...

The same principles are also valid for capacitive and inductive harvesters

A great amount of work has still to be done... good for us!!!



A macro bistable application has been
developed (by wisepower srl)...




