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Whole-systems energy transparency 
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Application Software 

System Software 

Architecture 

Devices 

Energy is consumed by 
physical processes. 
 
Yet, application programmers 
should be able to “see” 
through the layers and 
understand energy 
consumption at the level of 
code. 
 
The same applies to designers 
at every level. 
 
How is this possible? 



Energy of software? 

•  Energy is consumed by hardware 

•  But in these lectures we attribute 
energy cost to software 

•  Why? 
– (to summarise some of Kerstin’s points) 
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Reason 1 

• We take the application 
programmer’s viewpoint 
– programmers don’t know much 

about hardware 
– high-level languages hide the 

platform from the programmer 
•  Which is usually a Good Thing, don’t you 

agree? 
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Reason 2 

•  Energy efficiency as a design goal 
from the start 

•  Get an energy profile for a program as 
early as possible 
 Analyse the code to find out how 
much energy a program will use 
 Deliver software with energy 
guarantees 
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Reason 2 - continued 

  Don’t wait to test energy efficiency on 
hardware, after the software is 
developed  

 
 
 
   It might be too late to fix “energy bugs” 
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Development 
machine 

Deployment 
platform 



Reason 3 

•  You can save more energy at the 
software level than the hardware level 

 There are more energy optimisation 
opportunities higher up the system 
stack. 
 Much energy is wasted by application 
software 
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Energy transparency 

•  Our aim is to let the programmer 
“see” the energy usage of the 
code 

–  without executing it 
–  so that the programmer can “see” 

where the program wastes energy 
–  experiment with different designs 
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Software factors affecting energy 

Important factors are 

•  Computational efficiency 
•  Quality of low-level machine code 
•  Parallelism 
•  Amount and rate of communication 
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Computational efficiency 

•  There is a strong correlation between 
time and energy consumption (for a 
single thread) 

•  Execute as few instructions as possible 
to achieve the given task, saving 
energy 

•  Furthermore, the machine will return 
more quickly to an idle (low-energy) 
state 

/113 11 



Computational efficiency (2) 

•  Hence a large part of the energy-
aware programmer’s job for sequential 
code is the same as for performance-
awareness 

•  Get the job done quickly, using 
efficient algorithms and data structures 
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Low-level code optimisation 

•  Given the same high-level code (e.g. C+
+) there could be many different 
machine instruction programs.   

•  Lower energy can be achieved e.g. 
– using VLIW (Very Long Instruction Word) 

instructions and vectorisation 
– exploitation of low-power processor states 

using frequency and voltage scaling (DVFS).  

•  Energy-aware compiler’s responsibility 
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Parallelism 

•  Is it more energy-efficient to parallelise a 
task? 

•  The answer is not straightforward. 
•  Execution time might be reduced but 

more energy might be consumed 
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e 

e1 

e2 

e3 

e > e1 + e2 + e3  ???  

If the processors for each process 
are identical, then the parallel program  
probably uses more energy. 
There is some overhead for managing 
threads and communication. 

SEQ 

PAR 



Parallelism and clock speed 
•  Let f = processor clock frequency 
•  Let P = power 
•  Let V = voltage 
•  P =  cV2f (where c is a constant) 
•  E = Pt (when we run the processor for t time units) 
•  Hence e = e1 + e2 + ... +  en for n processes, if the 

same total number of instructions is executed, at 
the same frequency f. 

•  But if we reduce f, the total energy will reduce 
because V can also be reduced and P is 
proportional to V2!!! 
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Parallelism (cont’d) 

•  Hence it is worth parallelising (to save 
energy) if 
–  there is little or no idle time in each 

processor 
•  a waiting processor is wasting energy 

–  the clock speed can be reduced in some 
or all processors, compared to a single 
process execution 
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How can static analysis help? 

•  Automatic complexity analysis 
– understand the best, worst and average 

cases 
–  focus on optimising hot loops 

•  Timing analysis in multi-threaded code 
– compare parallel algorithm performance, 

throughput, etc. 
–  identify wait times, potential low-power 

states, etc. 
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How can static analysis help? (2) 

•  Analysis of other energy-related 
resources 
– communication volume and frequency 
– analysis of cache behaviour 
– analysis of memory footprint 
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SW developer’s view 

•  How do we visualise the results of 
analysis? 

•  This is a difficult question in itself. 
•  Here are some examples and thought 

experiments 
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Example 
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biquadCascade(BANKS) 
=  
157 * BANKS + 51.7 
nJoules 

This is an estimate of 
the energy used by the 
function. 
 
It is a linear function of 
the value of BANKS 



Visualise energy of program blocks 
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Which code blocks are hot? 
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Example 
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Energy a design goal for programmers 
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Summary of goals 

•  Tools for the programmer 

–  that give information about the energy 
usage of programs without running them 
(energy transparency) 

–  that allow energy assertions to be 
checked (energy design goals) 
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Semantics and program analysis 

•  To achieve the goals we need tools for 
program analysis 

•  Program analysis is based on formal 
program semantics 
–  the mathematical study of program 

meanings 
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Programs are machines (that consume energy) 
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n = 4; 

z = 1;

while (n > 0) {

      z = z*n; 

      n = n-1;

} 

print(z);


Semantics gives the “machine” defined 
by a program. 



Analysis of programs 

•  A program is a physical object. e.g. 

– some symbols on paper 
– a pattern of bits in memory 

•  But what is the meaning of a program? 
•  This is program semantics. 
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Tiwari’s Energy Equation (from 
Kerstin’s slides) 

29 

§  Ni is the number of times instruction i is 
executed. 

§  Ni,j is the number of times instruction i is followed 
by instruction j in the program execution. 

§  The aim of static analysis is to determine Ni and 
Ni,j for all possible program executions 
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Program semantics 
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n = 4; 

z = 1;

while (n > 0) {

      z = z*n; 

      n = n-1;

} 

print(z);


To execute or analyse 
this program, 
we need to understand  
the meaning of teh symbols 
such as “while”, “>”, “*”, 
“;”, ”{”, “}”, etc. 



Different styles of program 
semantics 

•  Operational semantics  
– small steps (from one state to the next) 
– big steps (from the start to the end state) 
– Hoare-Floyd conditions 

•  Denotational semantics 
–  the mathematical function represented 

by a program 
– obtained by composing the functions 

representing its parts 
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Phases of semantic analysis 

1.  Syntax analysis (parsing) 
–  breaking the program into is basic parts 

and determining its structure 
2.  Semantic translation 
–  representation of the program in some 

suitable mathematical or logical form 

3.  Semantic interpretation 
–  using the semantic representation to 

analyse the program execution  
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Program syntax tree (parsing) 

n = 4
 z = 1


z = z*n
 n = n-1


print(z)
while 


n>0 


Statement List


Statement List
n = 4; 

z = 1;

while (n > 0) {

      z = z*n; 

      n = n-1;

} 

print(z);
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From syntax tree to flow graph 
Grammar Rules    Semantic Rules for flow of control 
If → if E then S1 else S2 
 
E.true := Sl



 
 
 
E.false := S2


 
 
 
S1.next := If.next


 
 
 
S2.next := If.next


While → while E S1 
 
E.true := S1


 
 
 
E.false := While.next


 
 
 
S1.next := While


StatementList → S1S2 .....    Sn 
Sj.next = Sj+1    (j = 1 to n-1) 
 


 
 
 
Sn.next := StatementList.next




S → StatementList | If | While | Print | Assign



 
 
 
StatementList.next := S.next


 
 
 
If.next := S.next


 
 
 
While.next := S.next


 
 
 
Print.next := S.next


 
 
 
Assign.next := S.next
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From syntax tree to flow graph 

n = 4
 z = 1


z = z*n
 n = n-1


print(z)
while 


n>0 


Statement List


Statement List

n = 4; 

z = 1;

while (n > 0) {

      z = z*n; 

      n = n-1;

} 

print(z);


true 

false 



From flow graph to state automata 
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n  z 

n’  z’ 

n = 4 
z = 1 

n > 0 
n’ = n-1 
z’ = z * n 

n = n’ 
z = z’ 

n ≤ 0,   print(z) 
stop 

start 



Exercise 
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while (m != n) {
   if (m > n) {
      m = m-n;
   }
   else {
      n = n-m;
   }
}

1. Draw the syntax 
tree 

2. Draw the control 
flow graph 

3. Draw the state 
automaton 



Phases of semantic analysis 

1.  Syntax analysis (parsing) 
–  breaking the program into is basic parts 

and determining its structure 
2.  Semantic translation 
–  representation of the program in some 

suitable mathematical or logical form 

3.  Semantic interpretation 
–  using the semantic representation to 

analyse the program execution  
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From automaton to predicate logic 
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true → reachable1 
(reachable1 ⋀ n=4 ⋀ z=1)  
  → reachable2(n,z)  

(reachable2(n,z)  ⋀ n<0 ⋀ z’=z*n ⋀ n’=n-1)  
  → reachable3(n’,z’) 

(reachable3(n’,z’) ⋀ n=n’ ⋀ z=z’ )  
  → reachable2(n,z) 

reachable2(n,z) ⋀ n ≥ 0 ⋀ print(z) )  
  → stop 

 
 

Horn clauses 



Logical representation 
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x1, x2, ..., xn x’1, x’2, ..., x’n 

e(x1, x2, ..., xn, x’1, x’2, ..., x’n) 

program point j program point k 

(reachablej(x1, x2, ..., xn)  ⋀ e(x1, x2, ..., xn, x’1, x’2, ..., x’n))  
  → reachablek(x’1, x’2, ..., x’n) 

transition constraint 



Example: A rate limiter* 
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*Example by Monniaux 



Rate limiter – logic representation 
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r1(X,X_old) :-  
 X_old=0,  
 r0(_,_). 

r1(X,X_old) :- 
 r5(X,X_old). 
  

r2(X,X_old) :- 
 X >= -1000, 
 X =< 1000, 
 r1(_,X_old). 
  

r3(X,X_old) :-  
 X1 >= X_old+1, 
 X = X_old+1, 
 r2(X1,X_old). 

r3(X,X_old) :-  
 X < X_old+1, 
 r2(X,X_old). 
  

r4(X,X_old) :-  
 X1 =< X_old-1, 
 X = X_old-1, 
 r3(X1,X_old). 

r4(X,X_old) :-  
 X > X_old-1, 
 r3(X,X_old). 
  

r5(X,X_old) :- 
 X_old=X, 
 r4(X,_). 



More examples from ENTRA tool 
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Identification of basic blocks 

•  A basic block is a section of “straight-
line” code. 
– The start of a block is a branch or merge 

point 
– The end of a block is a branch or jump  

•  Basic blocks can be extracted from 
the control flow graph 

•  Every statement in a basic block is 
executed the same number of times 
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Phases of semantic analysis 

1.  Syntax analysis (parsing) 
–  breaking the program into is basic parts 

and determining its structure 
2.  Semantic translation 
–  representation of the program in some 

suitable mathematical or logical form 

3.  Semantic interpretation 
–  using the semantic representation to 

analyse the program execution  
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Program analysis 

•  Program properties 
•  Program invariants 
•  Global properties that depend on 

summary of an infinite number of 
behaviours 

•  Prove absence of bugs (verification) 
rather than presence (testing/
simulation) 
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Invariants 

•  Many program analysis and 
verification tasks involve proving 
invariants 

•  An invariant is an assertion that is true 
at a given program point. 

•  We consider invariants on energy 
usage. 
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Example invariant 
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-1000 ≤ x_old ≤ 1000 
Check assertion 



Proving invariants 

•  To prove that invariant P holds at 
program point j, prove the following 
implication 

reachablej(x1,...,xn) → P  
which is equivalent to 
¬( reachablej(x1,...,xn) ⋀ ¬P) 
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Proof by approximation 
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reachablej(x1,...,xn)  

P Overapproximation 
of the set of points 
where 
reachablej(x1,...,xn)  
is true. 
 
 
 
 
Contained  
within P, hence 
 
reachablej(x1,...,xn)→P 
 



Energy invariants 

•  The program state can contain resource 
counters. 

•  reachablek(x1,...,xn,e) means that the 
total energy consumed is e, when the 
program reaches point k 

 
•  So we can express and prove assertions 

about energy (or other resources) 
•  More on this later... 
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Two basic techniques 

•  How to capture all reachable states? 
– answer, fixpoint techniques 

•  How to capture an infinite set of 
states? 
– answer, abstract interpretation 

•  These two methods underlie much 
program analysis 
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Fixpoint computation 

•  Sounds complicated, but it is a very 
simple procedure 

•  It is a closure or saturation procedure 
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Fixpoint example 
•  Consider a route network, with stations a,b,...,h 
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a

c

b

d

e

g

f 

h



post(S) function 

•  Let S be a set of stations.  
•  post(S) is the set of stations reachable in one 

step from S. E.g. post({a,h}) = {b,c,d,g} 
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a

c

b

d

e

g

f

h



Reachability as a fixpoint 

•  The set of stations reachable from an 
initial set S, called Reach(S) is defined 
as the smallest set Z such that Z = F(Z) 

where F(Z) = S ∪ post(Z) 

 
•  This can be computed as the limit of a 

sequence ∅, F(∅), F(F(∅)), ...   
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Example 

•  Find the stations reachable from a. 
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a

c

b

d

e

g

f

h

F(Z) = {a} ∪ post(Z) 
 
∅ 
F(∅) = {a} 
F({a}) = {a,b,c,d} 
F({a,b,c,d}) = {a,b,c,d,f} 
F({a,b,c,d,f}) = {a,b,c,d,e,f} 
F({a,b,c,d,e,f}) = {a,b,c,d,e,f} 
 
fixpoint found {a,b,c,d,e,f} 



Exercise 

•  Using the same graph, compute the 
set of states reachable from e, using a 
fixpoint computation. 
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The reachable states of a program 

•  We apply the same idea to find the 
reachable states of a program, starting with 
the initial state. 
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n  z 

n’  z’ 

n = 4 
z = 1 

n > 0 
n’ = n-1 
z’ = z * n 

n = n’ 
z = z’ 

n ≤ 0, print(z) 
stop 

start 



The reachable states of a program 
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n  z 

n’  z’ 

n = 4 
z = 1 

n > 0 
n’ = n-1 
z’ = z * n 

n = n’ 
z = z’ 

n ≤ 0, print(z) 
stop 

start 

2 

3 

2   3 
{}   {} 
{(4,1)}         {} 
{(4,1)}         {(3,4)} 
{(4,1),(3,4)}    {(3,4)} 
{(4,1),(3,4)}  {(3,4),(2,12)} 
....   .... 
 
{(4,1),(3,4),  {(3,4),(2,12),(1,24)} 
(2,12),(1,24), 
(0,24) }                  

(n,z) represents the values of n and z at a given point 



Infinite fixpoints 

•  However, usually the set of reachable 
states of a program is infinite, and the 
sequence could keep on growing 

•  We might never reach the fixpoint 

•  In this case we use abstraction 
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Abstract interpretation 

Example 

•  476305 × -576 = 274351680 

•  Is the above equation correct? 
 
 

/113 62 



Rule of signs 

•  The rule of signs is an abstraction of the 
multiplication relation 

+ × +   =   + 
+ × −   =   − 
− × +   =   − 
− × −   =   + 
We can check incorrectness, but not 
correctness with the rule of signs. 
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The interval abstraction 

•  The value of a variable is abstracted by 
an interval 
–  The variable has any value within the interval 

•  We can perform operations on intervals, 
as we did for signs 

•  E.g. [3,10] + [-2,6] = [3+(-2), 10+6] = [1,16] 

•  Exercise. What is [3,10] − [-2,6]? 
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Example: interval abstraction 

•  The set of pairs of values {(4,1),(3,4), 
(2,12),(1,24),(0,24) } can be abstracted by 
the pair of intervals ([0,4], [1,24])          

•  So n is between 0 and 4, z is between 1 
and 24. 

•  But information has been lost 
–  the pair (3,19) is also consistent with the 

intervals. 
–  the intervals give an over-approximation of 

the reachable states. 
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Convex polyhedra 

•  A more precise abstraction than 
intervals is given by convex polyhedra 

•  Convex polyhedra are linear 
inequalities among the state variables 
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Example convex polyhedron abstraction 
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r1(I,J) :- 
I=0,J=10.

r2(I,J) :- 
r1(I,J).

r2(I,J) :-
I1 =< J1,
I = I1+2,
J = J1-1,
r2(I1,J1).

r3(I,J) :-
I >= J+1,
r2(I,J).



Approximate reachable states 
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r1(I,J) = [I=0,J=10].
r2(I,J) = [-I >= -16,I >= 0,I+2*J=20].
r3(I,J) = [-3*I >= -26,3*I >= 22,I+2*J=20].

This result is computed fast, using the  
Parma Polyhedra Library to perform the  
operations on convex polyhedra. 



Summary so far.... 

•  We can translate a program to a state 
automaton 

•  We can compute over-approximation 
of the reachable states of the program  
– using fixpoint computation and 

abstraction 

•  We can use the approximation to 
check assertions about the program. 
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