
Software and Energy-aware
Computing

Fundamentals of static analysis of software

John Gallagher
Roskilde University

ICT-Energy: Energy consumption in future ICT devices

Summer School, Aalborg, Denmark, August 13-16, 2016

Acknowledgements

The partners in the EU ENTRA project (2012-2015)

/113 2

Kerstin Eder and team

Pedro López García and team

Henk Muller and team

Roskilde team

http://entraproject.eu

Whole-systems energy transparency

/113 3

Physics

Application Software

System Software

Architecture

Devices

Energy is consumed by
physical processes.

Yet, application programmers
should be able to “see”
through the layers and
understand energy
consumption at the level of
code.

The same applies to designers
at every level.

How is this possible?

Energy of software?

•  Energy is consumed by hardware

•  But in these lectures we attribute
energy cost to software

•  Why?
– (to summarise some of Kerstin’s points)

/113 4

Reason 1

• We take the application
programmer’s viewpoint
– programmers don’t know much

about hardware
– high-level languages hide the

platform from the programmer
•  Which is usually a Good Thing, don’t you

agree?

/113 5

Reason 2

•  Energy efficiency as a design goal
from the start

•  Get an energy profile for a program as
early as possible
 Analyse the code to find out how
much energy a program will use
 Deliver software with energy
guarantees

/113 6

Reason 2 - continued

  Don’t wait to test energy efficiency on
hardware, after the software is
developed

  It might be too late to fix “energy bugs”

/113 7

Development
machine

Deployment
platform

Reason 3

•  You can save more energy at the
software level than the hardware level

 There are more energy optimisation
opportunities higher up the system
stack.
 Much energy is wasted by application
software

/113 8

Energy transparency

•  Our aim is to let the programmer
“see” the energy usage of the
code

–  without executing it
–  so that the programmer can “see”

where the program wastes energy
–  experiment with different designs

/113 9

Software factors affecting energy

Important factors are

•  Computational efficiency
•  Quality of low-level machine code
•  Parallelism
•  Amount and rate of communication

/113 10

Computational efficiency

•  There is a strong correlation between
time and energy consumption (for a
single thread)

•  Execute as few instructions as possible
to achieve the given task, saving
energy

•  Furthermore, the machine will return
more quickly to an idle (low-energy)
state

/113 11

Computational efficiency (2)

•  Hence a large part of the energy-
aware programmer’s job for sequential
code is the same as for performance-
awareness

•  Get the job done quickly, using
efficient algorithms and data structures

/113 12

Low-level code optimisation

•  Given the same high-level code (e.g. C+
+) there could be many different
machine instruction programs.

•  Lower energy can be achieved e.g.
– using VLIW (Very Long Instruction Word)

instructions and vectorisation
– exploitation of low-power processor states

using frequency and voltage scaling (DVFS).

•  Energy-aware compiler’s responsibility

/113 13

Parallelism

•  Is it more energy-efficient to parallelise a
task?

•  The answer is not straightforward.
•  Execution time might be reduced but

more energy might be consumed

/113 14

e

e1

e2

e3

e > e1 + e2 + e3 ???

If the processors for each process
are identical, then the parallel program
probably uses more energy.
There is some overhead for managing
threads and communication.

SEQ

PAR

Parallelism and clock speed
•  Let f = processor clock frequency
•  Let P = power
•  Let V = voltage
•  P = cV2f (where c is a constant)
•  E = Pt (when we run the processor for t time units)
•  Hence e = e1 + e2 + ... + en for n processes, if the

same total number of instructions is executed, at
the same frequency f.

•  But if we reduce f, the total energy will reduce
because V can also be reduced and P is
proportional to V2!!!

/113 15

Parallelism (cont’d)

•  Hence it is worth parallelising (to save
energy) if
–  there is little or no idle time in each

processor
•  a waiting processor is wasting energy

–  the clock speed can be reduced in some
or all processors, compared to a single
process execution

/113 16

How can static analysis help?

•  Automatic complexity analysis
– understand the best, worst and average

cases
–  focus on optimising hot loops

•  Timing analysis in multi-threaded code
– compare parallel algorithm performance,

throughput, etc.
–  identify wait times, potential low-power

states, etc.

/113 17

How can static analysis help? (2)

•  Analysis of other energy-related
resources
– communication volume and frequency
– analysis of cache behaviour
– analysis of memory footprint

/113 18

SW developer’s view

•  How do we visualise the results of
analysis?

•  This is a difficult question in itself.
•  Here are some examples and thought

experiments

/113 19

Example

/113 20

biquadCascade(BANKS)
=
157 * BANKS + 51.7
nJoules

This is an estimate of
the energy used by the
function.

It is a linear function of
the value of BANKS

Visualise energy of program blocks

/113 21

Which code blocks are hot?

/113 22

0"

250"

500"

750"

1000"

1250"

1500"

1750"

2000"
"E
ne

rg
y"
Co

ns
um

p3
on

"(J
ou

le
)"

Blocks"

In"Applica3on"
At"3000ATimesAExecu3on"

Example

/113 23

Energy a design goal for programmers

/113 24

Summary of goals

•  Tools for the programmer

–  that give information about the energy
usage of programs without running them
(energy transparency)

–  that allow energy assertions to be
checked (energy design goals)

/113 25

Semantics and program analysis

•  To achieve the goals we need tools for
program analysis

•  Program analysis is based on formal
program semantics
–  the mathematical study of program

meanings

/113 26

Programs are machines (that consume energy)

/113 27

n = 4;

z = 1;

while (n > 0) {

 z = z*n;

 n = n-1;

}

print(z);

Semantics gives the “machine” defined
by a program.

Analysis of programs

•  A program is a physical object. e.g.

– some symbols on paper
– a pattern of bits in memory

•  But what is the meaning of a program?
•  This is program semantics.

/113 28

Tiwari’s Energy Equation (from
Kerstin’s slides)

29

§  Ni is the number of times instruction i is
executed.

§  Ni,j is the number of times instruction i is followed
by instruction j in the program execution.

§  The aim of static analysis is to determine Ni and
Ni,j for all possible program executions

/113 29

Program semantics

/113 30

n = 4;

z = 1;

while (n > 0) {

 z = z*n;

 n = n-1;

}

print(z);

To execute or analyse
this program,
we need to understand
the meaning of teh symbols
such as “while”, “>”, “*”,
“;”, ”{”, “}”, etc.

Different styles of program
semantics

•  Operational semantics
– small steps (from one state to the next)
– big steps (from the start to the end state)
– Hoare-Floyd conditions

•  Denotational semantics
–  the mathematical function represented

by a program
– obtained by composing the functions

representing its parts

/113 31

Phases of semantic analysis

1.  Syntax analysis (parsing)
–  breaking the program into is basic parts

and determining its structure
2.  Semantic translation
–  representation of the program in some

suitable mathematical or logical form

3.  Semantic interpretation
–  using the semantic representation to

analyse the program execution

/113 32

/113 33

Program syntax tree (parsing)

n = 4
 z = 1

z = z*n
 n = n-1

print(z)
while

n>0

Statement List

Statement List
n = 4;

z = 1;

while (n > 0) {

 z = z*n;

 n = n-1;

}

print(z);

/113 34

From syntax tree to flow graph
Grammar Rules Semantic Rules for flow of control
If → if E then S1 else S2

E.true := Sl

E.false := S2

S1.next := If.next

S2.next := If.next

While → while E S1

E.true := S1

E.false := While.next

S1.next := While

StatementList → S1S2 Sn
Sj.next = Sj+1 (j = 1 to n-1)

Sn.next := StatementList.next

S → StatementList | If | While | Print | Assign

StatementList.next := S.next

If.next := S.next

While.next := S.next

Print.next := S.next

Assign.next := S.next

/113 35

From syntax tree to flow graph

n = 4
 z = 1

z = z*n
 n = n-1

print(z)
while

n>0

Statement List

Statement List

n = 4;

z = 1;

while (n > 0) {

 z = z*n;

 n = n-1;

}

print(z);

true

false

From flow graph to state automata

/113 36

n z

n’ z’

n = 4
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z)
stop

start

Exercise

/113 37

while (m != n) {
 if (m > n) {
 m = m-n;
 }
 else {
 n = n-m;
 }
}

1. Draw the syntax
tree

2. Draw the control
flow graph

3. Draw the state
automaton

Phases of semantic analysis

1.  Syntax analysis (parsing)
–  breaking the program into is basic parts

and determining its structure
2.  Semantic translation
–  representation of the program in some

suitable mathematical or logical form

3.  Semantic interpretation
–  using the semantic representation to

analyse the program execution

/113 38

From automaton to predicate logic

/113 39

true → reachable1
(reachable1 ⋀ n=4 ⋀ z=1)
 → reachable2(n,z)

(reachable2(n,z) ⋀ n<0 ⋀ z’=z*n ⋀ n’=n-1)
 → reachable3(n’,z’)

(reachable3(n’,z’) ⋀ n=n’ ⋀ z=z’)
 → reachable2(n,z)

reachable2(n,z) ⋀ n ≥ 0 ⋀ print(z))
 → stop

Horn clauses

Logical representation

/113 40

x1, x2, ..., xn x’1, x’2, ..., x’n

e(x1, x2, ..., xn, x’1, x’2, ..., x’n)

program point j program point k

(reachablej(x1, x2, ..., xn) ⋀ e(x1, x2, ..., xn, x’1, x’2, ..., x’n))
 → reachablek(x’1, x’2, ..., x’n)

transition constraint

Example: A rate limiter*

/113 41

*Example by Monniaux

Rate limiter – logic representation

/113 42

r1(X,X_old) :-
 X_old=0,
 r0(_,_).

r1(X,X_old) :-
 r5(X,X_old).

r2(X,X_old) :-
 X >= -1000,
 X =< 1000,
 r1(_,X_old).

r3(X,X_old) :-
 X1 >= X_old+1,
 X = X_old+1,
 r2(X1,X_old).

r3(X,X_old) :-
 X < X_old+1,
 r2(X,X_old).

r4(X,X_old) :-
 X1 =< X_old-1,
 X = X_old-1,
 r3(X1,X_old).

r4(X,X_old) :-
 X > X_old-1,
 r3(X,X_old).

r5(X,X_old) :-
 X_old=X,
 r4(X,_).

More examples from ENTRA tool

/113 43

Identification of basic blocks

•  A basic block is a section of “straight-
line” code.
– The start of a block is a branch or merge

point
– The end of a block is a branch or jump

•  Basic blocks can be extracted from
the control flow graph

•  Every statement in a basic block is
executed the same number of times

/113 44

Phases of semantic analysis

1.  Syntax analysis (parsing)
–  breaking the program into is basic parts

and determining its structure
2.  Semantic translation
–  representation of the program in some

suitable mathematical or logical form

3.  Semantic interpretation
–  using the semantic representation to

analyse the program execution

/113 45

Program analysis

•  Program properties
•  Program invariants
•  Global properties that depend on

summary of an infinite number of
behaviours

•  Prove absence of bugs (verification)
rather than presence (testing/
simulation)

/113 46

Invariants

•  Many program analysis and
verification tasks involve proving
invariants

•  An invariant is an assertion that is true
at a given program point.

•  We consider invariants on energy
usage.

/113 47

Example invariant

/113 48

-1000 ≤ x_old ≤ 1000
Check assertion

Proving invariants

•  To prove that invariant P holds at
program point j, prove the following
implication

reachablej(x1,...,xn) → P
which is equivalent to
¬(reachablej(x1,...,xn) ⋀ ¬P)

/113 49

Proof by approximation

/113 50

reachablej(x1,...,xn)

P Overapproximation
of the set of points
where
reachablej(x1,...,xn)
is true.

Contained
within P, hence

reachablej(x1,...,xn)→P

Energy invariants

•  The program state can contain resource
counters.

•  reachablek(x1,...,xn,e) means that the
total energy consumed is e, when the
program reaches point k

•  So we can express and prove assertions

about energy (or other resources)
•  More on this later...

/113 51

Two basic techniques

•  How to capture all reachable states?
– answer, fixpoint techniques

•  How to capture an infinite set of
states?
– answer, abstract interpretation

•  These two methods underlie much
program analysis

/113 52

Fixpoint computation

•  Sounds complicated, but it is a very
simple procedure

•  It is a closure or saturation procedure

/113 53

Fixpoint example
•  Consider a route network, with stations a,b,...,h

/113 54

a

c

b

d

e

g

f

h

post(S) function

•  Let S be a set of stations.
•  post(S) is the set of stations reachable in one

step from S. E.g. post({a,h}) = {b,c,d,g}

/113 55

a

c

b

d

e

g

f

h

Reachability as a fixpoint

•  The set of stations reachable from an
initial set S, called Reach(S) is defined
as the smallest set Z such that Z = F(Z)

where F(Z) = S ∪ post(Z)

•  This can be computed as the limit of a

sequence ∅, F(∅), F(F(∅)), ...

/113 56

Example

•  Find the stations reachable from a.

/113 57

a

c

b

d

e

g

f

h

F(Z) = {a} ∪ post(Z)

∅
F(∅) = {a}
F({a}) = {a,b,c,d}
F({a,b,c,d}) = {a,b,c,d,f}
F({a,b,c,d,f}) = {a,b,c,d,e,f}
F({a,b,c,d,e,f}) = {a,b,c,d,e,f}

fixpoint found {a,b,c,d,e,f}

Exercise

•  Using the same graph, compute the
set of states reachable from e, using a
fixpoint computation.

/113 58

The reachable states of a program

•  We apply the same idea to find the
reachable states of a program, starting with
the initial state.

/113 59

n z

n’ z’

n = 4
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z)
stop

start

The reachable states of a program

/113 60

n z

n’ z’

n = 4
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z)
stop

start

2

3

2 3
{} {}
{(4,1)} {}
{(4,1)} {(3,4)}
{(4,1),(3,4)} {(3,4)}
{(4,1),(3,4)} {(3,4),(2,12)}
....

{(4,1),(3,4), {(3,4),(2,12),(1,24)}
(2,12),(1,24),
(0,24) }

(n,z) represents the values of n and z at a given point

Infinite fixpoints

•  However, usually the set of reachable
states of a program is infinite, and the
sequence could keep on growing

•  We might never reach the fixpoint

•  In this case we use abstraction

/113 61

Abstract interpretation

Example

•  476305 × -576 = 274351680

•  Is the above equation correct?

/113 62

Rule of signs

•  The rule of signs is an abstraction of the
multiplication relation

+ × + = +
+ × − = −
− × + = −
− × − = +
We can check incorrectness, but not
correctness with the rule of signs.

/113 63

The interval abstraction

•  The value of a variable is abstracted by
an interval
–  The variable has any value within the interval

•  We can perform operations on intervals,
as we did for signs

•  E.g. [3,10] + [-2,6] = [3+(-2), 10+6] = [1,16]

•  Exercise. What is [3,10] − [-2,6]?

/113 64

Example: interval abstraction

•  The set of pairs of values {(4,1),(3,4),
(2,12),(1,24),(0,24) } can be abstracted by
the pair of intervals ([0,4], [1,24])

•  So n is between 0 and 4, z is between 1
and 24.

•  But information has been lost
–  the pair (3,19) is also consistent with the

intervals.
–  the intervals give an over-approximation of

the reachable states.

/113 65

Convex polyhedra

•  A more precise abstraction than
intervals is given by convex polyhedra

•  Convex polyhedra are linear
inequalities among the state variables

/113 66

Example convex polyhedron abstraction

/113 67

r1(I,J) :-
I=0,J=10.

r2(I,J) :-
r1(I,J).

r2(I,J) :-
I1 =< J1,
I = I1+2,
J = J1-1,
r2(I1,J1).

r3(I,J) :-
I >= J+1,
r2(I,J).

Approximate reachable states

/113 68

r1(I,J) = [I=0,J=10].
r2(I,J) = [-I >= -16,I >= 0,I+2*J=20].
r3(I,J) = [-3*I >= -26,3*I >= 22,I+2*J=20].

This result is computed fast, using the
Parma Polyhedra Library to perform the
operations on convex polyhedra.

Summary so far....

•  We can translate a program to a state
automaton

•  We can compute over-approximation
of the reachable states of the program
– using fixpoint computation and

abstraction

•  We can use the approximation to
check assertions about the program.

/113 69

