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- 1821 : T. J. Seebeck : a potential difference is created when a 
temperature difference is applied at the extremities of a material.

V = (SA - SB) x (T1 - T2) = SAB x ΔT

where Si = Seebeck coefficient or thermoelectric power (µV.K-1)

By convention : S < 0 for n type materials

S > 0 for p type materials

SOME YEARS AGO…
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- 1834 : J.-C. Peltier : when a current is applied through a solid, there is a 
heat transfer from one side to the other

- 1838 : H. Lenz : when a current goes through a material in contact with 
an other, there is a production, and vice versa, an absorption of heat at 
its extremities.  

- 1851 : W. Thomson : good definition of the three thermoelectric (TE) 
effects: Seebeck, Peltier and Thomson. 

- 1950s : A. Ioffe : discovery of TE properties of doped semiconductor 
materials.

SOME YEARS AGO…
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- Two working modes:

heat

TH

TC

np I

Energy harvesting in output

Thermoelectric generator mode
Thermal gradient is imposed

→ Seebeck effect: TE Generator

+

TH

TC

I

absorbed heat

np

Power supply in input

Thermoelectric cooling mode
Electric tension is imposed

→ Peltier effect: TE Cooler

THERMOELECTRIC CONVERTERS
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- three important properties for TE materials :

- S : TE power (µV.K-1)

- σ : electrical conductivity (S.m-1)

- λ : thermal conductivity (W.m-1.K-1)

Carnot 
efficiency TE system 

efficiency

- definition of the maximum of conversion efficiency :

Tc - Tf

Tc

Φm = ηc x ηth =               x
√(1 + ZTm) - 1

√(1 + ZTm) + 
Tf

Tc

- definition of the dimensionless power factor ZTm :

With Tm = (Tc + Tf) / 2

EFFICIENCY AND POWER FACTOR

σ x S2 x Tm

λ
ZTm = 

Tf = cold T
Tc = hot T
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- Evolution of ZT as a function of temperature :

EFFICIENCY AND POWER FACTOR

→ Goal : to obtain the highest value of ZT !
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materials

devicesapplications

optimum
performances

Materials properties 
compared with 
environment 
temperatures

Type of thermal exchange between 
module and its environment

adaptation of device 
geometries as a 

function of materials

THERMOELECTRICS, A 3-LEVEL APPROACH
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• Distribution of research areas:

Materials
80%

11%
4%

5%

Devices

Theory

Applications

THERMOELECTRICS, A 3 LEVELS APPROACH

(source : Int. Conf. Thermoelec., Caen, France, 2018)

2007

Materials
73%

8%
10%

9%

Devices

Theory

Applications

2018

(source : Int. Conf. Thermoelec., Jeju Island, South Korea, 2007)
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- temperature range (ZTmax and thermal stability)

- TE properties (σ, S and λ)

- realization and integration technologies

- criteria of abundance, toxicity

- structural properties

→ economical and 
environmental 
considerations

• They differentiate themselves from each other by :

→ nanostructuration

• Various families of TE materials :

- semiconductors
- oxides
- skutterudites
- silicides
- etc.

THERMOELECTRIC MATERIALS
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• Performances of TE materials (non exhaustive list):

→ as a function of temperature

THERMOELECTRIC MATERIALS

H-H: TiNiSn & derivatives (430°C max)

skutterudites: CoSb3 & derivatives (530 °C max)

clathrates: Ba8Ga16Ge30 (630 °C max)

Pb1-xSnxTe1-ySey (530 °C max)

Si0.8Ge0.2 (1000 °C max)

Mg2Si & derivatives (530 °C max)

Type N Type P

Bi-Sb

Bi2(Se,Te)3

Zn4Sb3 & derivatives (400 °C max)

skutterudites: CeFe3.5Co0.5Sb12 (710 °C max)

clathrates: Ba8Ga16Ge30 (630 °C max)

Pb1-xSnxTe1-ySey (530 °C max)

Si0.8Ge0.2 (1000 °C max)

MnSi1.75-x (Tmax not clear)
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• Performances of TE materials:

→ as a function of nature of materials

1017 1019 charge carriers (cm-3)1018

Insulators Semiconductors Metals

S
Seebeck

coefficient

σ
electrical 

conductivity

thermal 
conductivityλ

ZT 

σ x S2

λ
ZT =              T 

THERMOELECTRIC MATERIALS
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• Bi2Te3

- since decades, THE thermoelectric material, the most performing at 
room temperature

- semiconductor with the two different kinds of doping:
. doped with Sb for p type
. doped with Se for n type

- ZT ≈ 1 at 300 K
(ρ = 1100 µΩ.cm, S = 210 µV.K-1 and λ ≈ 1.4 W.m-1.K-1) 

• Advantages :

• Drawbacks :

- scarcity, toxicity…

→ all commercial devices use Bi2Te3 as TE material!

THERMOELECTRIC MATERIALS
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• Si / SiGe

- the most known of semiconductors…

- belongs to the world of microelectronics 

- both types of doping are obtained generally with:
. B for p type
. P or As for n type

- performances at high temperatures (SiGe) :
ZT ≈ 0.9 @ 1000 K (n type)
ZT ≈ 0.6 @ 1000 K (p type)

- abundant, not toxic

• Advantages :

• Drawbacks :

- performances at room temperature (SiGe) :
ZT ≈ 0.1 at 300 K

THERMOELECTRIC MATERIALS



| 17EnABLES Summer School 2019 | Jean-Yves Escabasse

• Oxides

- ignored during a long time because of their very low electrical 
conductivity

- advantages : non-toxicity, thermal stability, high resistance to 
oxidation

- discovery in 1997 of NaxCoO2 : p-type material with a very high 
electrical conductivity (for an oxide) : 0.2 mΩ.cm

- S = 100 µV.K-1 and λ ≈ 4 à 5 W.m-1.K-1 : so a ZT ≈ 0.3 at 300 K

- problem : to find competitive n-type materials

• More information :
→ I. Terasaki et al. “Large thermoelectric power in NaCo2O4

single crystals”, Phys. Rev. B 56, (1997)

THERMOELECTRIC MATERIALS
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• Skutterudites

- identified in 1928 by Oftedal

- the name comes from Skotterud, a mining Norwegian town where cobalt 
is extracted

- binary compounds of MX3 type where :
- M = transition metal of column 9 (cobalt, rhodium, 

iridium)
- X = element of column 15 (phosphorous, arsenic, antimony, 
bismuth…)

- and also MX6, M4X12 types

- undoped, these binary compounds are p-type. But n-type compounds 
can be obtained by replacing a transition metal by an element from the 
column 10 (Ni, Pt, Pd), for example

- present high mobility and good Seebeck coefficient

THERMOELECTRIC MATERIALS
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• Skutterudites

- Complex compounds can be realized to obtain a low thermal 
conductivity

Materials Type ZT (300K) ZT (900K)

CeFeCoSb3 p 0.2 1.4

Ba0.3Ni0.05Co3.95Sb12 n 0.08 1.25

• More information :
→ B. C. Sales et Al. Filled “Skutterudite antimonides: A new class 
of thermoelectric materials”, Science 272, (1996).

THERMOELECTRIC MATERIALS
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• Half-Heusler

- The term derives from the name of German mining engineer and chemist 
Friedrich Heusler, who studied such compounds in 1903.

-Examples:

- n-type : TiZrHfNiSn : ZT = 1.5 at 825 K
((V,Nb)-doped Ti0.5Zr0.25Hf0.25NiSn)

- p-type : ଴,ହ ଴,ହ ଴,ଷଷ ଴,ଷଷ ଴,ଶ ଴,଼ ଴,ଷଷ: ZT = 0.4 at 873 K

THERMOELECTRIC MATERIALS

• More information :
→ G. Rogl, Acta Materialia 131 (2017)

•www.isabellenhuette.de

XYZ composition
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• Silicides

- Compounds based on silicon and one (or more) metallic elements

- Adapted for middle/high-range temperatures

- Typical silicides: Mg2(Si,Sn), MnSi, etc.

- n-type :  Mg2(Si,Sn) : ZT = 1.55 at 773K 
(Bi-doped Mg2Si0.4Sn0.6)

- p-type : MnSi : ZT = 1.04 at 920K
(doped with rhenium: Mn30.4Re6Si63.6)

THERMOELECTRIC MATERIALS

• More information :
→ P. Gao et al., Appl. Phys. Lett. 105, 202104 (2014)
→ A. Yamamoto et al., Jap. J. Appl. Phys. 55, 020301 (2016)
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• Zintl phase

- Polar intermetallic compounds of elements with large electronegativity 
differences

- Obtained by reaction between a group 1 (alkali metal) or group 2 
(alkaline earth) and any post-transition metal or metalloid (i.e. from 
group 13, 14, 15 or 16)

- Named after the German chemist Eduard Zintl who investigated them 
in the 1930s

- Examples: NaTl, NaSi, Cs2NaAs7, K12Si17

THERMOELECTRIC MATERIALS

• Clathrates

- A clathrate is a chemical substance consisting of a lattice that traps or 
contains molecules

- More information: 
https://www.sciencedirect.com/science/article/pii/S0927796X16300237
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• Distribution of materials research 

18%

18%

22%

Other materials

Nanomaterials

19%
15%

8%

OxidesSkutterudites

Clathrates

THERMOELECTRIC MATERIALS

(source : Int. Conf. Thermoelec., Jeju Island, South Korea, 2007)

2007

41%
Chalcogenides

14%
Silicides

10%
Oxides

7%
(H)Heusler

6%Zintl

5%Skutterudites

12%

Other materials

5%
Organic/Hybrid

2018

Semiconductors

(source : Int. Conf. Thermoelec., Caen, France, 2018)
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• Toxicity

→ modernization of the European legislation for chemical 
substances

→ setting up of system REACH (since 2006), an integrated system of 
recording, estimates, permission and restriction of chemical
substances. 

• Objectives: improvement of the protection of human health and environment 
by maintaining a competitiveness and by reinforcing the innovation of the 
European chemical industry. 

• A European agency for chemical products has been also created to manage 
the REACH program. 

• Ex. of problematic TE material: lead telluride (PbTe)

• More information :

http://europa.eu/legislation_summaries/internal_market/single_market_for_goo
ds/chemical_products/l21282_fr.htm

THERMOELECTRIC MATERIALS
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• Scarcity

→ relative abundance of main elements on Earth 

• More information :
→ P. Vaqueiro et al., J. Mat. Chem. 20, (2010)
→ https://ec.europa.eu/growth/sectors/raw-materials/specific-
interest/critical_en

→ Ex. : tellurium (Bi2Te3) = 
the 9th rarest element on 
Earth…

THERMOELECTRIC MATERIALS
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• Cost :

→ cost of TE materials based on untreated materials cost

THERMOELECTRIC MATERIALS

• More information:
→ S. LeBlanc et al, Sust. Mat. Tech. 1-2, (2014)
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• TE materials can be obtained by different means

→ function of application, cost… 
device 

thickness

Thin film 
technologies 

Deposition CVD, PVD
MoCVD,
EJM, …

e < 10 µm

Printing 
technologies 

Ink jet, 
ink printing,

spray, …

10 < e < 500 µm e > 500 µm

Bulk materials
technologies

Chemical and mechanical
synthesis,

HIP, SPS, …

THERMOELECTRIC MATERIALS
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• Realization of TE materials in thin films technologies

→ ex : Si by CVD

SiH4

H2

Substrate

deposition

1

2
3

4

5

1 - reactant transport by forced convection
2 - diffusion of reagent species to the surface 
and adsorption ;
3 - chemical decompositions of reagent 
species ;
4 - desorption of products coming from the 
chemical reactions ;
5 - evacuation of gaseous flow

THERMOELECTRIC MATERIALS
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Formulation

TE ink / paste

printing
TE powders

p

n

• Realization of TE materials in printing technologies

→ ex : Bi2Te3

THERMOELECTRIC MATERIALS
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Functional 
discs

Cutting of 
discsTE powders

p

n

TE ingots

sintering

Cutting of 
legs

Functional 
thermoelements

Thermolegs

Deposition of 
Ni - 2 µm

HIP, SPS, µwave

• Realization of TE materials in bulk technologies

→ ex : Bi2Te3

THERMOELECTRIC MATERIALS
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Conventional TE materials : 8% efficiency

Low dimensions TE materials : 18% efficiency !!!

• Best ZT for materials : ZT ≈ 1 at room temperature since tens of years

• To have a viable and competitive TE system, a ZT ≥ 3 is needed !

• How to increase ZT ? 

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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• To increase  , two possibilities :

- increase of power factor σS²

- decrease of thermal conductivity λ

• About fifteen years ago, Hicks and Dresselhaus have introduced the 
concept of electron and holes quantum confinement in low dimensional 
materials which could increase the ZT significantly.

• Originally to increase the power factor σS²…

• In fact, to decrease the thermal conductivity λ !

σ x S2

λ
ZT =              T 

→ Introduction of nanostructuration for TE !

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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σ x S2

λ
ZT =              T 

• increase of the electron state density near Fermi level

→ increase of electron quantum confinement

• Increase of power factor σS²

• by imposing judicious defaults at the electronic structure : by 
increasing the carriers number

• Mott’s equation :

• expression of σ : 

• so : 

derivative in energy 
of state density

Derivative in energy 
of mobility

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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σ x S2

λ
ZT =              T 

• Thermal conductivity : sum of two terms :

λ = λe+ λp 

with λe : electronic thermal conductivity
λp : lattice thermal conductivity (phonons)

• According to the Wiedemann-Franz law : 

λe = L0 x σ x T

with L0 : Lorenz constant (2,44.10-8 W.Ω.K-2)
σ : electrical conductivity
T  : temperature

• Decrease of the lattice thermal conductivity λp

→ phonons scattering !

• Decrease of the thermal conductivity λ

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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• Different mechanisms of phonon scattering:

→ “classical” scattering :

- grains boundaries diffusion (ex: polycrystalline materials)
- impurities diffusion

mid/high wave length phonon
low wave length phonon

C. J. Vineis et al., Adv. Mat. 22, (2010) 

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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• How nanostructuration has an influence on phonon scattering ?

→ “addition” of phonon scattering mechanisms :

- scattering with interfaces
- scattering with nanoparticles

→ nanostructuration

mid/high wave length phonon
low wave length phonon

C. J. Vineis et al., Adv. Mat. 22, (2010) 

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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• The different kinds of nanostructuration :
Device

thickness

Thin films
technologies 

e < 10 µm

Printing
technologies

10 < e < 500 µm e > 500 µm

Bulk materials
technologies

Superlattices 
(SL)

Nanowires 
(NW)

Quantum Dots 
Superlattices (QDSL)

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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• Influence of nanostructuration on materials performances in thin films 
technologies : superlattices

* R. Venkatasubramanian et al., Nature 413, (2001) 

→ these nanostructures are very studied for a lot of materials families 
such as Bi2Te3, PbTe, SiGe, GaAs… originally to increase σS², finally to 
decrease lattice thermal conductivity λp

Evolution of ZT as a function of temperature 
for Bi2Te3 / Sb2Te3 SL (1 nm / 5 nm)

→ ZT record at room temperature : 2.5

• Example 1: p-type Bi2Te3/Sb2Te3 SL *

→ grown by low-temperature 
organometallic epitaxy

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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SEM image of a Pt-bonded Si nanowire

• Influence of nanostructuration on materials performances in thin films 
technologies : nanowires

• Example 2: p-type rough Si NW *

→ grown by electroless etching (EE) method

Single nanowire power factor (red squares) of the nanowire and 
calculated ZT (blue squares) using the measured k of the 52nm NW. By 

propagation of uncertainty from the ρ and S measurements, the error 
bars are 21% for the power factor and 31% for ZT.

→ ZT at 300 K : 0.6

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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• Influence of nanostructuration on materials performances in thin films 
technologies : nanowires

* A. I. Boukai et al., Nature 451, (2008) 

• Example 3: p-type Si NW *

Temperature dependence of ZT for two 
different groups of nanowires

→ ZT at 200 K : 1

Scanning electron micrographs of the 
device used to quantify S, σ and λ of Si 

nanowire arrays

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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→ many studied systems, notably SRBQ with PbTe, SiGe, ErAs… 
All these nanostructures allow an important decrease of λ, rather 
than an increase of σS². The nanodots scatter high wave length 
phonons, and decrease slightly σS² (because of the scattering of 
charge carriers)

* T. C. Harman et al., Science 297, (2002)

→ ZT at room temperature : 1.6

• Influence of nanostructuration on materials performances in thin films 
technologies : quantum dots superlattices

• Example 4: n-type PbSeTe/PbTe QDSL *

→ grown by MBE epitaxy

SEM image of quantum-dot 
(top view)

Schematic cross section of the 
QDSL structure investigated

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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Nanopowders
Nanoinclusions

• The different kinds of nanostructuration : Device
thickness

Thin films
technologies 

e < 10 µm

Printing
technologies

10 < e < 500 µm e > 500 µm

Bulk materials
technologies

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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• Influence of nanostructuration on materials performances in bulk technologies

→ ZT at 300 K : 1.2 (0.95)
→ ZT at 400 K : 1.4 (1)

• Example: Bi2Te3 (p) *

Low-magnification TEM images 
of an as-ball-milled nanopowder.

Temperature dependence of σ (A), S (B), λ (D), and ZT (E) of a hot-pressed 
nanocrystalline bulk sample (black squares) as compared with that of an SOA ingot 

(white squares)

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION

X. Yan et al., NanoLetters 10, (2010)B. Poudel et al., Sience 320, (2010)

→ Bi2Te3 (n) : 22% increase of ZT (0.9/1.04 at 25°C/125°C) compared 
to SoA (0.7/0.85 at 25°C/125°C) 

M. S. Dresselhaus et al., Adv. Mat. 19, (2007)
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• Nanostructuration: summary state of the art

C. Vineis et al., Adv. Mat. 22, (2010)

THERMOELECTRIC MATERIALS: NANOSTRUCTURATION
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• Three main architectures

H C C

H

• 2D Architecture
(planar)

• 3D Architecture
(cross-plane)

Top view of 2D 
architecture

Top view of 3D 
architecture

→ modules made of lines
→ n or p lines
→ thermal and electrical flow in 
planar direction

→ modules made of legs
→ n or p legs
→ thermal and electrical flow in 
cross plane

• 2.5D Architecture
(combined)

→ modules made of lines
→ lines made of n and p 
segments
→ thermal flow in cross plane 
and electrical flow in planar 
direction

Cross view and top view of 
2.5D architecture

THERMOELECTRIC DEVICES
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THERMOELECTRIC DEVICES: CEA EXAMPLES

• 2D Bi / Sb devices

• 3D Bi / Sb devices

• 2D Si/SiGe SR devices

Glass substrate 100mm
Patterns: lines
N = 100 to 160 junctions
Ate = 1 cm²

Si substrate 100mm
Patterns: legs
N = 9000 to 60000 junctions
Ate = 1 cm²

200nm

SOI substrate 100mm
Patterns : lines
N = 80 to 120 junctions
Ate = 1 cm²
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Functionalized 
thermo-elements

Thermo-element

Barrier film Ni - 2 µm

Thermoelectric generator

Assembly

Connections

Final system

Heat 
spreader, 
converter

System
integration

Thermoelectric generator

DC/DC converter LED

Heat spreader

Semi-automatic manufacturing 
of bulk devices

THERMOELECTRIC DEVICES: CEA EXAMPLES

Automatic manufacturing 
of bulk devices
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• Thin film technology devices

• The main devices manufacturer for energy harvesting and cooling in thin film 
technology are:

- Micropelt (Germany)

- Laird (USA)

• For these two manufacturers, devices are realized with Bi2Te3.

THERMOELECTRIC DEVICES
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• Micropelt Technology

→ polycristalline Bi2Te3 deposited by sputtering on Si standard wafers with
SiO2 layer, with thickness around some tens of microns

→ n and p type materials deposited separately on two different wafers

→ wafers are then cut and n and p parts are pasted together

→ more than 100 junctions are integrable on 1 mm²

→ very small devices

THERMOELECTRIC DEVICES
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• Micropelt : Peltier cooler

• Thin film technology devices

www.micropelt.com

THERMOELECTRIC DEVICES
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Voltage performances
(sensors application)

Power performances
(µenergy harvesting application)

Ex : Performances of MPG-D602 device with 450 leg pairs

• µTEG Micropelt

www.micropelt.com

THERMOELECTRIC DEVICES
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• Applications

→ Sensors
→ Wireless communication

• µTEG Micropelt

www.micropelt.com

THERMOELECTRIC DEVICES
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→ Laird Technologies, components and solutions manufacturer for 

thermal protection of electronic devices acquired Nextreme Thermal 

Solutions (US manufacturer of TE thin film technologies) in 2013 

→ polycristalline Bi2Te3 deposited by MOCVD on GaAs sacrificial 

substrates

• Laird (Nextreme) Technology

THERMOELECTRIC DEVICES
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→ n and p type materials deposited separately on two different substrates

→ wafers are then cut and n an p parts are pasted on support (as thermal
conductor ceramic)

→ metallic contacts are deposited by electrodeposition on n and p parts,
and a second support is pasted with complementary metallic contacts

(extracted from patent n° EP2423990 A1 deposited by Nextreme Thermal Solutions, Inc.)

• Laird (Nextreme) Technology

THERMOELECTRIC DEVICES



| 57enABLES Summer School 2019 | Jean-Yves Escabasse

• Laird Peltier µcooler

→ Laser diodes
→ IR sensors

• Applications

PowerCool Series Air-to-Air 
Thermoelectric Assembly

(extracted from patent n° EP2423990 A1 deposited by Nextreme Thermal Solutions, Inc.)

THERMOELECTRIC DEVICES
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• Laird µTEG

→ Wireless sensors
→ LED lighting
→ Battery charger

• Applications

Thermobility WPG-1

(extracted from patent n° EP2423990 A1 deposited by Nextreme Thermal Solutions, Inc.)

THERMOELECTRIC DEVICES
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• Bulk technology devices

• The main device manufacturers for energy harvesting and cooling in bulk 
technology are offering Bi2Te3-based products
• A lot are based in USA, Russia, Ukraine, Japan, Korea, China…

• European producers of GEN2 TE materials and TEGs are emerging:
• RGS Development
• Isabellenhütte
• Hotblock Onboard

THERMOELECTRIC DEVICES

RGS Thermagy® panel Isabellenhütte TE module
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• Altec 1010 device

- temperature range: 30 and 250 °C 
- supply 6 W (4.4 V)
- efficiency 6 %

http://ite.cv.ukrtel.net

• HZ-2 (Hi-Z) device

- temperature range: 30 and 230 °C 
- supply 2.5 W (3.3 V)
- efficiency 4.5 %

www.hi-z.com

• Bulk technology devices

THERMOELECTRIC DEVICES
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• Thermion device (Ukraine)

- max current : from 0.3 to 5 A 
- max deltaT : 

. 73 K (one level)

. 130 K (multi-levels)

→  for cooling 

www.thermion-company.com

Applications :

- IR detectors cooling
- lasers
- photonic tools
- microchips
- scientific tools
- …

• Bulk technology devices

THERMOELECTRIC DEVICES
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THERMOELECTRIC DEVICES: MAIN COMMERCIAL COMPANIES

Companies Countries Main applications

HOTBLOCK ONBOARD FRANCE Power generator

THERMOGEN-AB SWEDEN Power generator and Peltier module

RIF Corporation RUSSIA Peltier module

MicroPelt GERMANY Power generator and Peltier module

ALTEC UKRAINE Power generator and Peltier module

THERMION UKRAINE Peltier module

THERMIX UKRAINE Peltier module

KRYOTHERM RUSSIA Power generator and Peltier module

European Thermodynamics UK Power generator and Peltier module

CIDETE SPAIN Power generator and Peltier module

KOMATSU JAPAN Power generator and Peltier module

TAIHUAXING CHINA Power generator and Peltier module

NEXTREME USA Power generator and Peltier module

MARLOW USA Power generator and Peltier module

MELCOR USA Power generator and Peltier module

FERROTEC USA Power generator and Peltier module

Hi-Z USA Power generator
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1 - Thermoelectrics : some definitions and effects

2 - Thermoelectric materials

3 - Nanostructuration : why and how ?

4 - Thermoelectric devices

5 - Applications

6 - Conclusions
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• Three kinds of TE applications:

→ sensors

→ cooling

→ energy harvesting

APPLICATIONS
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SENSORS

APPLICATIONS
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• Major applications (notably in thin films technologies) thanks to a high 

sensitivity in voltage !!

• Autonomous marketable technology 

• New perspectives for embedded components:

– Silicon based technology compatible with microelectronic 

technologies

– performances given by integration conditions of device and used 

materials

• Internet of Things (IoT, IIoT): wide networks of autonomous sensors

• Thermal flow sensors

APPLICATIONS
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→ applications area: mobile phones, laptop…

→ with the increasing number of applications, the integrated components 
number increases and the temperature too

→ need to control, manage thermal flow

• Thermal flow sensors

APPLICATIONS



| 68EnABLES Summer School 2019 | Jean-Yves EscabasseE. Aldrete-Vidrio et al., Thermionic Conf., (2005)

→ excellent sensibility in voltage

→ free sensors in current

• Thermal flow sensors

APPLICATIONS
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→ spin-off from ETH Zurich (Federal Polytechnic High School of Zurich) 
created in 2009

→ greenTEG develops, manufactures and commercializes thermal and 
radiative flow sensors (and TEG)

→ measures thermal flow (conductive, radiative, convective) quickly with a 
high accuracy

Pictures of different greenTEG sensors

• Thermal flow sensors

APPLICATIONS
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→ flexible devices from Bi2Te3 deposited by electrochemical process in 
micro-holes on polymer sheet (SU8)

Schematic structure of the greenTEG device

Microscope picture of pn junctions Picture of flexible greenTEG device

• Thermal flow sensors

(data from http://www.greenteg.com/)

APPLICATIONS
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COOLING

APPLICATIONS
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8% Microprocessor

9% Industry

16% Telecom

14% Automotive

6% Defense and Space 

18% Medical laboratories
Medicine

29% public 
consumption

• Thermoelectrics market (Komatsu ECT2007)

→ world market for Peltier devices (not final products, only TE devices) 
≈ US$ 200-250 M/year

APPLICATIONS
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• IC chips cooling

• Micro-localized cooling

• Embedded cooling in chips

• Peltier micro-cooling

APPLICATIONS

Thin film SiGe/Si SL 
microrefrigerator

(data from K. Fukutani, Solid-State Microrefrigerator on a Chip, http://www.electronics-
cooling.com/2006/08/solid-state-microrefrigerator-on-a-chip/)

Thermal image of 
microrefrigerator under 

operation microrefrigerator’s cooling 
versus supplied current
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• Localized TE micro-cooling (for ex, for electronic chips…)

Intel Corporation, Nature Nanotech., (2009)

APPLICATIONS
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→ total cooling : 15 °C

• Localized TE micro-cooling (for ex, for electronic chips…)

APPLICATIONS
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• Domestic consumption: mini-fridge

APPLICATIONS
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• Cockpit air conditioning

• Automobile

→ HVAC : Heating, Ventilation and Air-Conditioning

→ TE systems localized near the dashboard, roof…

APPLICATIONS
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• Automotive

www.amerigon.com

→ Amerigon : US company producing air-conditioned seats for 
automotive market
→ TE devices supplier : BSST (USA)

→ Climate Control Seat (CCS)

→ heating or cooling seats

→ for automotive and trucks companies 

• Air-conditioned seats

APPLICATIONS
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• Air-conditioned seats

www.amerigon.com

• Automotive

APPLICATIONS
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THERMOELECTRIC 
GENERATORS

APPLICATIONS
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→ Forecasts for the next years :

→ world market for generators devices (final systems) 
≈ US$ 25-50 M/year

Source IDTechEx 

APPLICATIONS
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Requirements for a TEG

• Main elements:

• TE Modules to convert heat into 

electricity

• 2 heat exchangers to maintain heat 

flow and temperature gradient 

• In addition a DC/DC or AC/DC 

converter / inverter to provide 

usable current, i.e. suitable voltage 

and intensity 

APPLICATIONS

Thermoelectric Modules

Heat Exchanger

Heat Source

Heat sink

Heat Exchanger
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Conditions for a performing 

TEG: to optimise all stages

• TE material level

• Device level

• System level

On top of this: make it price 

competitive

Liu, W. (2015). Current progress and future challenges in thermoelectric power generation: 
From materials to devices. Acta Materialia, Vol. 87, pp. 357-376.

APPLICATIONS



| 84EnABLES Summer School 2019 | Jean-Yves EscabasseM. Kishi, 18th ICT, (1999)

→ legs in Bi2Te3

→ manufactured and commercialized in 1998
→ 1000 watches sold for 1100 €

APPLICATIONS

• Seiko watches
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→ TE generator made with 1242 junctions
→ power : 13.8 µW for a voltage 515 mV/K 
→ manufactured and commercialized in 2001
→ price in Japan 500 €

www.citizen.co.jp/release/01/010815ec.htm

• Citizen watches

APPLICATIONS
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• Watches :

→ the only commercialized application

→ a watch consumes between 1 and 2 µW

→ temperature difference available at wrist : only 1 K

→ Seiko TE generator performances : 22 µW (300 mV)

→ a voltage amplifier increases it to 1.5 V

APPLICATIONS
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APPLICATIONS

Space Applications: RTG

• nuclear electrical generator producing electricity with heat from 

radioactive disintegration of radioisotope materials (typically 238Pu)

• first applications for RTG : military and spatial (in particular, the 

missions: Apollo, Pioneer, Viking, Voyager, Ulysses, Galileo, New  

Horizons)
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Advantages:

• For the majority of these programs, supply in electricity for 

equipment which has to work continually for several years without 

human intervention

• e.g. embedded generators for New Horizons probe : can provide 200 W 

for 50 years. After two centuries, power decreases to 100 W

• Better resistance to cold conditions than a battery. On Mars:

Tavg: -63°C / Tmin: -143°C / Tmax +20°C

• Advantage over solar panels: less surface with same power, works at 

night and far away from the Sun, insensitive to dust.

APPLICATIONS
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APPLICATIONS

* T. Caillat et al., 23rd rd Symposium on Space Nuclear Power and Propulsion STAIF 2006 Jet Propulsion Laboratory/California Institute of Technology
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Glow of 238PuO2 because of its 
own radioactive disintegration GPHS-RTG diagram of Ulysses, Galileo, 

Cassini-Huygens and New Horizons probes

• Applications for Space: RTG

APPLICATIONS
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Picture of Cassini probe RTG

Assembly of the New Horizons probe (2005) 
integrating the RTG

• Applications for Space: RTG

APPLICATIONS
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• Other applications for RTG

- Used by Soviet Union to supply isolated lighthouses 
- integrated with thousands of generators 
- today, no RTG anymore because of terrorism

→ Lighthouses

APPLICATIONS
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→ Pacemakers

- development of miniaturized generators for pacemakers with 238Pu
- generated power: 300 µW
- first implantation in 1970 in Paris

• Other applications for RTG

APPLICATIONS
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→ today RTG for pacemakers have been substituted by green 
technologies based on lithium-ion batteries or even other TE systems
→ generated power: 100 µW and voltage 4 V with 4000 junctions and 
an 6 cm² area

(D. Bhatia, J Pharm Bioallied Sci. 2010)

→ Pacemakers

• Other applications for RTG

APPLICATIONS
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• Applications: WSN

→ WSN : Wireless Sensors Networks

→ Sensors usually located in difficult environment with the goal to send 
information (temperatures, pressures, flow, etc.) to control rooms

→ New potential with Industry4.0 and Internet of Things

→ Transmission by RFID which needs power

→ Power needed:
- few µW in sleep mode
- few mW to several hundreds mW in transmission mode

APPLICATIONS
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(http://www.micropelt.com)

→ Example : bus bars in electrical installations

• Applications: WSN

APPLICATIONS

Fire can appear…

Information transmitted to control room
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• TE generators: Global TE

→ Specialized in very big TE installations

(http://www.globalte.com/products/GlobalTEGs/Model8550)

APPLICATIONS
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→ Thot = 538ºC (gas burner)
→ Tcold = 163ºC (cooling fins spreading heat by natural convection
→ Performances:

. 480 Watts at 12 Volts

. 550 Watts at 24 Volts

• TE generators: Global TE

APPLICATIONS
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• Strong constraints for CO2 emissions

→ bonus/penalty system

→ commitment to decrease CO2 emission for new cars

→ norm for greenhouse gas

• Increase of communication systems

→ increased number of sensors and electronic devices in cars
→ Electrical generation by the alternator picks up mechanical energy 
from the engine → detrimental to engine yield and fuel consumption

• Automotive

APPLICATIONS
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(eere.energy.gov)

• Increase of power needs for vehicles

• Automotive

APPLICATIONS
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• Use of TE systems for :

→ fuel saving (goal: 5 to 6%)

→ power used for auxiliary systems and 
accessories: lights, radar for parking aid, 
anti-collisions systems, navigational aid 
systems, sensors, etc.

→ size decrease of alternator (goal: 1/3 
decrease)

→ decrease of gas emissions and 
greenhouse gas

• Involved manufacturers:

→ BMW, Chrysler, General Motors, 
Volvo, Fiat, Toyota, Honda, Renault 
Trucks, VW, Daimler, MAN…

• Automotive

APPLICATIONS

* W. He et al., Recent development and application of thermoelectric generator
and cooler, Applied Energy 143 (2015) 1–25
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→ use of combustion energy:

A. Bodensohn, Daimler Chrysler, (2004)

• Automotive

APPLICATIONS
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Criteria for a car TEG

• Cost: < 1 €/W

• Volume

• Weight

• Performance: significant fuel savings

• Impact on engine performance: e.g. back pressure

• Reliability

• Sustainability, e.g. recyclability

APPLICATIONS
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→ thermal energy available with exhaust pipe (truck engine)

• Automotive

APPLICATIONS
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→ Example 1: 
Lincoln MKT AWD 3.5L V6 GTDI 

J. LaGrandeur, Amerigon, (2011)

• Automotive

APPLICATIONS

→ 250 W generated
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→ Example 2: GM prototype for Chevy Suburban

J. Fairbanks, DoE, (2011)

• Automotive

APPLICATIONS
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→ Example 2: GM prototype for Chevy Suburban

- generated power:
. > 350 W in city
. > 600 W in highway

J. Fairbanks, DoE, (2011)

• Automotive

APPLICATIONS
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→ Example 3: BMW X6

- created to supply 500 W at 120 km/h 
(5% saving in fuel)

J. Fairbanks, DoE, (2011)

• Automotive

APPLICATIONS
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→ Example 3: BMW X6

J. Fairbanks, DoE, (2011)  &  J. LaGrandeur, Amerigon, (2011)  &  www.caradisiac.com

• Automotive

APPLICATIONS
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• Automotive

APPLICATIONS

→ Example 4: Valeo

J.Y. Escabasse, (2019), ECT 2019, Limassol, Cyprus

http://www.integral-h2020.eu/

Bulk silicide 200 W/TEG
Cost < 1 €/W

ZT[200-400°C] > 0.5
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EGR 
TEG

EXH 
TEG

J.Y. Escabasse, (2019), ECT 2019, Limassol, Cyprus

http://www.integral-h2020.eu/

• Automotive (Trucks)

→ Example 5: TitanX

Half-Heusler
1000 W/TEG

Price 1.1 to 1.6 €/W
ZT[100-500°C] > 0.5

APPLICATIONS
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→ conversion of thermal energy in electrical energy and reciprocally

→ a lot of studies on TE materials to increase devices performances, 
and so to make viable their industrialization

→ significant importance of nanostructuration which has led to major 
advances in materials performances

→ three main applications for TE devices: sensors, cooling and power 
generation

→ TE systems can be integrated in several and varied application fields 
(mobile, laptop, spatial, automotive, consumer goods…) 

→ Introduction to mass markets must address sustainability issues + be 
price-competitive

CONCLUSIONS
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