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Cells are the "building blocks™ of life

The cell is the basic structural, functional, and biological unit of all
known organisms. A cell is the smallest unit of life. A living
organism is formed by about 10*? cells.

Cell Tissue

Similar cells join together to form tissues. Different tissues join together to
form organs. Organs work together to form systems.



There are different types of cells
In a living organism

Red blood cells Nerve cells Reproductive cells

Not all cells are the same. Different cells have different functions.



Cells are delimited by a plasma-
membrane

The plasmamembrane delimits the cell and separates it from the

extracellular ambient.
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Functions of the plasmamembrane:
e exchange of water, ions,

nutrients and waste substances
With the extracellular space

e Reception and interpretations of
signals caming from other cells

eShape determination



The main component of the plasma-
membrane are phospholipids

Water

Phospholipids in water
solution spontaneously
organized to form bllayers
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Other components of the plasma-membrane
are proteins and carbohydrates
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Structure of the plasma-membrane: the fluid
mosaic model (Singer and Nicholson, 1972)

' Glycoprotein: protein with Glycolipid: lipid with
| . carbohydrate attached / carbohydrate
attached

Peripheral membrane Phospholipid
protein bilayer
Integral membrane Cholesterol Channel protein
protein



lons permeate the plasma-membrane only with
the help of transmembrane proteins

R

@

®

SAEEELEEAEELLLAAAEHLLLLETHAN

JALLL8RAEELLAEELLANNNL
®
§EEEEH4N
3388830903
®

0



Passive and active ion transporters

Passive transport: ions move along their electrochemical
gradient. No additional energy is required since this is a
spontaneous process.

Active transport: ions move against their electrochemical
gradient, using the energy derived by adenosine triphosphate
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Passive transport of ions is mediated
by ion channels

lon channels are integral membrane proteins forming a hydrophilc pore
where ions may easily permeate.
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Permeation through ion channels

Goldman assumption: constant electric field inside the membrane
( dU/dx = constant).
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Active transport of ions: The Na/K ATPase

ATP hydrolisis is coupled to the
transport of ions
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The activity of the Na/K ATPase Is responsible for
A permanent ionic gradient across the
plasma-membrane

[Na]=10 mM [Na].=142 mM
[K]=135 mM [K].=3 mM
[A]l.=145 mM
Na/KATPase

Power absorbed by the Na/K ATPase
Turnover rate of the Na/K ATPasi: 25 - 80 ATP/s (Liang et al., 2007)
Number of Na/K ATPase in a typical cell: 8*104 - 3*107 (Liang et al., 2007)
Overall turnover: 3*10% - 4*10° pmol ATP/s

Energy delivered by the hydrolisis of one ATP molecule: 7.3 kcal/mol

Power absorbed by Na/K ATPase in a typical cell: Ql pW — 1@




Biological cells possess an electric potential
difference across the plasma-membrane
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Mechanism of generation of the electric potential
difference across the plasma-membrane

1. Na/K ATPases
accumulate K ions inside
the cell

2. The accumulated K ions
then leave the cell
through K channels,
creating a charge
separation




Mechanism of generation of the electric potential
difference across the plasma-membrane

Needed conditions: @
1. It exists an ionic gradient between the
inside and outside of the cell

2. The plasma-membrane is differentially

permeable to the different ionic species D
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The membrane potential difference across the
plasma-membrane depends on the ion concentrations

and membrane permeabilities I«
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If the membrane is particularly permeable to an ion type, that ion will
contribute very much to establish the resting membrane potential



Can we extract the energy accumulated in the electric
Potential difference of a cell? How much power may we
extract from a a typical cell?

Harvesting electrode

Metal electrode glass electrode
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The plasma-membrane may be assimilated to an
electrical circuit, and each plasma-membrane
component behaves as a particular circuit elements
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Equivalent electrical circuit for a plasma-membrane
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Model of the electric behaviour of a cell during energy

harvesting I
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Parameter

DATPase
Ko
Nag
Clo
nAA,

Description
Cell radius
Specific membranecapacitance

Specific K channel conductance
Specific Na channel conductance

Cl channel conductance
Load resistance
Maximal turnover of the Na/K
ATPase
Density of Na/K ATPase
Extracellular K concentration
Extracellular Na concentration
Extracellular Cl concentration
Intracellular impermeable anions

Value
7 um
0.01 pF/um?
5*104 nS/um?
1*104 nS/um?
1*103 nS/um?
variable
133 ATP/s

3350/um?
3 mM
142 mM
145 mM
0.198 pmol




voltage (mV)

power(pW)

Estimation of the power harvested
from a typical cell
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Efficiency: harvested power/power absorbed by the Na/K ATPase 1 pw/(50 pW)=2 %



Skeletal muscle cells are very big and a much higher
energy Is obsorbed
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Power absorbed by the Na/K ATPase

Turnover rate of the Na/K ATPasi: 130 ATP/s (Plesner, 1981)

Number of
nuclei
Typical
dimensions

Volumes

Number of
Na/K ATPases
Adsorbed power

Number of Na/K ATPase in muscle cells: 3350 /um? (Clausen, 2003)
2.27 pmol ATP/s

Overall turnover:

Energy delivered by the hydrolisis of one ATP molecule: 7.3 kcal/mol

Power absorbed by Na/K ATPase in a typical cell:

1 50/mm

diam=5-20 Diam=500 um,

um length=up to few
cm

10°-10° FewpL

nL

103-107 100-101

50 pW 70 nW



Estimation of the power harvested
from a skeletal muscle cell
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Experimental proof of concept
In Xenopus oocytes




Energy may be harvested from a single oocyte
and used later for wireless communication
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Energy may be harvested repeatedly
from the same cell
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Experimental proof-of-concept on myotubes
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Energy may be harvested from a single myotube
and stored in a capacitor
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Skeletal muscle fibers recorded from mice
provide a relatively high energy
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Conclusions

Biological cells have an electrical potential
difference across their plasmamembrane

Electrodes inserted inside cells may be used to
harvest energy from the plasmamembrane potential
difference

Single high-dimension biological cells are able to
provide powers small but likely sufficient to let next
generation biosensors

The harvested energy can be stored over time to
reach values sufficiently high to operate a wireless
system for a limited time



Perspectives




