

Thin Film Solid State Batteries

Raphaël Salot CEA LETI – Storage and Energy Microsources Lab. Université Grenoble Alpes, Grenoble, FRANCE

NiPS Summer School 2019 Energy Storage Perugia, ITALIA

Outline

- Basics (lithium) of batteries
- Thin Film Solid State Batteries
 - Design, specific features and applications
 - Manufacturing process
 - Description conventional microbatteries
 - Examples of materials developments
 - Examples of particular designs

Basics of (lithium) batteries

Principle of an electrochemical generator

- Batteries are electrochemical cells in which the chemical energy is transformed into electrical energy.
- By using appropriate redox couple for each electrode the combination of the two half reaction is able to generate a spontaneous electron flow in the external circuit:

	Couple redox	E ⁰ /ENH (V)	🕈
	F_2/F^-	2.89	
	Ag ²⁺ /Ag ⁺	1.989	
	Au⁺/Au	1.69	
	PbO ₂ ,H ⁺ /Pb ²⁺	1.458	
	Cl ₂ /Cl ⁻	1.296	
	$O_2, H^+/H_2O$	1.229	
	Pt ²⁺ /Pt	1.180	
	Pd ²⁺ /Pd	0.915	
	Ag⁺/Ag	0.799	
	Hg ²⁺ /Hg	0.648	
	.▼ Cu ²⁺ /Cu	0.439	
	$N_2, H^+/NH^{4+}$	0.274	
	H^{+}/H_{2}	0.000	
	GeO ₂ ,H ⁺ /Ge	-0.104	2
	Pb ²⁺ /Pb	-0.126	2
	Sn ²⁺ /Sn	-0.141	2
	Ni ²⁺ /Ni	-0,260	
	Co ²⁺ /Co	-0.280	
	Cd ²⁺ /Cd	-0.402	
	Cr ³⁺ /Cr	-0,74	1 3
	► Zn ²⁺ /Zn	-0.760	
	SiO ₂ ,H⁺/Si	-0.990	
	Ti ³⁺ /Ti	-1.370	<u> </u>
	Zr ⁴⁺ /Zr	-1.450	
	Al ³⁺ /Al	-1.677	
	Be ²⁺ /Be	-1.968	
	Mg ²⁺ /Mg	-2.360	
	Na [⁺] /Na	-2.714	
	Ca²⁺/Ca	-2.868	
	K ⁺ /K	-2.936	
7	Li ⁺ /Li	-3.040	

sing oxidative nower

Principle of an electrochemical generator

- The amount of electrons that is delivered is proportional to the amount of oxidized/reduced materials (Faraday's law)
- Contrary to electronic devices, the operation of electrochemical cell involves both electronic and ionic transport, that are correlated.
- Mass transport is often a limiting step for battery operation

Battery features

Main features of an electrochemical energy storage device (battery)

- **Capacity (Coulomb or A.h)** \propto amount of electrode material
- Cell voltage (V)
- Energy density (W.h/kg and Wh/l)
- Power density (W/kg, W/l)
- Internal resistance / Impedance (Ω)
- Calendar life
- Cycle life (secondary batteries)
- Coulombic/ Energy efficiency (secondary batteries)
- Self-discharge rate
- Cost
- Safety
- Environmental footprint (raw materials, manufacturing process, recycleability)

Lithium batteries

Particular interest of Li batteries

- Lithium has the lowest redox potential (-3.05 V/HNE)
- Using a Li metal negative electrode allows to built cells with higher e.m.f (3-4 V) compared to aqueous cells (1.2-1.5 V) ⇒ high energy density
- Requires the use of aprotic solvents for the liquid electrolyte

Rechargeable batteries using two intercalation materials

- Lithium metal is replaced by a layered material (Graphite) that react at low voltage with Li⁺ according to an intercalation process to form LiC₆.
- Improvement of operation safety, while keeping a high energy density
- The positive electrode is an intercalation material (2D, 3D or 1D channel network), generally a lithiated transition metal oxide.

Rechargeable batteries using two intercalation materials

- Lithium metal is replaced by a layered material (Graphite) that react at low voltage with Li⁺ according to an intercalation process to form LiC_6 .
- Improvement of operation safety, while keeping a high energy density
- The positive electrode is an intercalation material (2D, 3D or 1D channel network), generally a lithiated transition metal oxide.
- Principle of Li-ion cells proposed by W. Murphy (1975)
- Commercialized by Sony Asahi Kasei (1991) on the basis of :
 - Layered oxide LiCoO₂ (J.B. Goodenough 1980)
 - Graphite (Reversible intercalation of Li, R. Yazami 1983)
 - Practical cell developments (A. Yoshino, 1985)
- + $LiCoO_2 \leftrightarrows xLi^+ + xe_- + Li_{1-x}CoO_2$ E+ ~ 3,7-4,2 V/Li+/Li
- $6 \text{ C} + \text{Li}^+ + \text{e}^- \leftrightarrows \text{LiC}_6$

E-~0.08-0.25 V/Li+/Li

Typical structure of a Li-ion battery

- Positive electrode: Active material (92-95 wt% + carbon additive (3-5 wt%) + polymer binder (PVdF) coated on an AI foil
- Negative electrode: Graphite or coke (>90 wt%) + carbon additive (3-5 wt%) + binder (PVdF or CMC) coated on a Cu foil
- Electrolyte: liquid electrolyte composed of organic solvent and a Li salt (LiPF6) impregnated in the porous electrodes. Separator: microporous polyolefine membrane or gelled electrolyte membrane ('Li-polymer').

3 main formats of Li-ion batteries

Batteries: Energy storage systems at various scales

IoT, MEMS, CMOS memories, Medical implantable	Smart cards, Skin patch, RFID	Wearables, E- textile, Medical device	Smartphone, Tablet, Power tool, Toy	Transport	Large-scale energy storage
Capacity range					
1 mAh	10 mAh	100 mAh	1 Ah	100 Ah	> 1kAh
Energy range					
1 mWh	10 mWh	1 Wh	10 Wh	1-100 kWh	> 1MWh
 Rechargeable Small footprint (microbatteries) LoSQUED Fast discharge TeState incorporate with energy Chroneting 	 Can be both disposable and rechargeable Laminar and thin, some with special form factor Relatively low power Cost sensitive 	 High energy density for small volume Long working hours Flexible, stretchable or thin, some with special form factor 	 Light-weight and small volume Long working hours, Some special form factors High power 	 Safe Reliable High power High energy density Cost per KWh 	Long life time Reliable High capacity Cost per cumulated KWh
Batteries	KOM Crucial for the second sec				ESS Energy Storage System Arr

All-solid-state Microbatteries

What is an all-solid-state lithium microbattery ?

Stack of thin solid films obtained by vacuum deposition techniques

What is an all-solid-state lithium microbattery ?

- Stack of thin solid films obtained by vacuum deposition techniques
- Performance
 - Capacity ~ 200-600 μAh.cm⁻²
 - High cycle life (1k-10k cycles), calendar life (~10y), possibly high voltage (~5V)
 - Low self discharge (<5%/year)</p>
 - Sustain high temperature (operation, storage)
- Distinctive features
 - Reduced footprint and/or thickness of the whole cell
 - Additive assembly process Monolithic structure
 - Cost of raw material (targets) << total manufacturing cost
 - Specific capacity (mAh.g⁻¹) criterion not relevant

Selected active materials ≠ Conventional Li-ion batteries

Thin film deposition by sputtering

- Process widely used in the microelectronics industry
- Suitable for 'simple' chemical compositions
- Preparation of new materials, possibly metastable using various modes:
 - DC or RF
 - Reactive sputtering
 - Co-sputtering
 - Multi-layers
- Deposition rate of oxides in the range 0.1 to 0.5 µm.h⁻¹
- Cost of the film: processing time >> cost of raw materials

Historical milestones

1983 TiS₂ or TiOS as positive electrode
 Kanehori et al. (Hitachi)
 Levasseur et al. (ICMCB, Bordeaux)
 Akridge et al. (Eveready Battery Company)

TiS₂ (CVD, PECVD)/LISIPO/Li [1] TiOS/Li₂SO₄-Li₂O-B₂O₃/Li [2] TiS₂/LiI-Li₃PO₄-P₂S₅/Li [3]

- **1992 Discovery of a new electrolyte:** LiPON Bates et al. (Oak Ridge National Lab) [4], used in commercial microbatteries
- 1996 1st use of LiCoO₂ as positive electrode
 Bates et al., various combinations of positive electrodes (LiCoO₂, LiMn₂O₄, V₂O₅) and negative ones (Li, SiTON, Zn₃N₂, Sn₃N₄) [5]
- **2000 « Li-free » microbattery manufactured without Li metal** *Neudecker et al.,* Li is electrodeposited on the current collector during the charge
- **2001** Emergence of Li-ion microbatteries

2004 Development of new deposition processes (sol-gel, ink-jet, laser) and novel **3D architectures**

[1] K. Kanehori et al., Solid State Ionics, 18-19 (1986) 818; [2] G. Meunier, R. Dormoy, A. Levasseur, patent WO9005387 (1988); [3] S. D. Jones, J. R. Akridge, Solid State Ionics, 53-56 (1992) 628; [4] J. B. Bates et al., Solid State Ionics, 53-56 (1992) 647; [5] J. B. Bates et al., J. *Electrochem. Soc.* 147(2) (2000) 517

Applications

- Energy back up for portable electronics
 - Real-time clocks
 - DRAM, SRAM
- Secured Pay Cards
- Battery-assisted Passive and Active RFID tags
- Systems-in-Package components (SiP)
- Low consumption sensors and actuators (+ energy harvesting devices): medical devices, wearable devices, smart packaging, …

Typical industrial manufacturing process

Present (and past) industrial products

12 µAh

50 µAh.cm⁻²

Lead-free reflow tolerant

Li – LiPON – LiCoO₂: a triptych becoming a standard

- First Li-LiPON-LiCoO₂ cell by J. Bates et al. (1996) [1]
 - Then adopted by Front Edge Technologies, Cymbet, IPS, ST Microelectronics, GS Nanotech...
- LiPON (lithium phosphorus oxynitride) [2]
 - RF sputtering of a Li₃PO₄ target, in a pure N₂ atmosphere

 - Chemically stable vs Li metal
 - Ionic conductivity at RT: 3.10⁻⁶ S.cm⁻¹ (Li_{3.2}PO_{3.0}N_{1.0}) [3]
 - 'Stable' up to 5 V/Li+/Li
- 📕 Li metal
 - Deposition by evaporation or sputtering
 - No dendrites with a solid electrolyte
- LiCoO₂ layered oxide
 - Volume capacity: 69 µAh.cm⁻².µm⁻¹
 - Mean discharge voltage ~ 4 V/Li⁺/Li
 - High cycle life between 3.0-4.2 V/Li⁺/Li
 - Facile Li diffusion between CoO₂ slabs
 - Metal-type electronic conductivity in $Li_{1-\varepsilon}CoO_2$ [4]

- Thicker electrodes - Higher surface capacity

[1] B. Wang, J.B. Bates, F.X. Hart, B.C. Sales, R.A. Zuhr, J.D. Robertson, J. Electrochem. Soc., 143, 3203- (1996)

[2] J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson, J. Power Sources, 43, 103-110 (1993)

[3] B. Fleutot, B. Pecquenard, H. Martinez, M. Letellier, A. Levasseur, Solid State Ionics,

[4] J. Molenda, A. Stokłosa, T. Bąk, Solid State Ionics, 36, 53-58 (1989) [5] S. Nieh – Front Edge Technologies, NEST Workshop, Lyon, France (2009)

Specifity of the LiCoO₂ thin film electrode

- Post deposition annealing is required to obtained the ordered R-3m layered oxide
 - As-deposited LiCoO_x is amorphous
 - Annealing in air/oxygen required at 550 650°C
 - Thermo-mechanical, thermo-chemical compatibility with the substrate

Pt, Au, Ni current collectors

P. J. Bouwman, B. A. Boukamp, H. J. M. Bouwmeester, P. H. L. Notten *J. Electrochem. Soc.*, 149, A699-A709 (2002)

B. Wang, J.B. Bates, C.F. Luck, B. C. Sales, R. A. Zuhr, amd J. D. Robertson, in 'Thin -Film Solid Ionic Devices and Materials', ed. by J.B. Bates, Electrochemical Society (1996)

Specifity of the LiCoO₂ thin film electrode

The preferred orientation of the LiCoO₂ film has to be monitored [1,2]

[1] J. B. Bates, N. J. Dudney, B.J. Neudecker, F.X. Hart, H.P. Jun, S.A. Hackney, *J. Electrochem. Soc.*, 147, 59-70 (2000)
 [2] Y. Yoon, C. Park, J. Kim, D. Shin, *J. Power Sources*, 226, 186-190 (2013)

New material optimized solutions for generic needs:

Improved capacity per surface/volume unit

New material optimized solutions for generic needs:

Improved capacity per surface/volume unit

Lower operating voltages

New material optimized solutions for generic needs:

Improved capacity per surface/volume unit

Lower operating voltages

Use of thermally sensitive substrates

New material optimized solutions for generic needs: Improved capacity per surface/volume unit Lower operating voltages Use of thermally sensitive substrates Solder reflow tolerance Dicing Solder reflow Wire bonding T_{max} = 260°C Epoxy curing 160°C x3 Integration in a BGA/LGA package Connection on the PCB µ-batteries on Si wafer

New material optimized solutions for generic needs:

Improved capacity per surface/volume unit

Lower operating voltages

Use of thermally sensitive substrates

Solder reflow tolerance

Lower impedance

New material optimized solutions for generic needs:

Improved capacity per surface unit

- Surface capacity limited by the cathode material \rightarrow replacement of LiCoO₂
- Higher volumetric capacity \rightarrow cost reduction / μ Ah

Insertion compound able to insert/deinsert more Li ions, with anions participating to the redox process (TiOS)

Material reacting with Li according to a conversion process (FeS₂)

New material optimized solutions for generic needs:

Improved capacity per surface unit

Lower operating voltage

Use of thermally sensitive substrates

- Insertion compound able to insert/deinsert more Li ions, with anions participating to the redox process (TiOS)
- Material reacting with Li according to a conversion process (FeS₂)

Titanium oxysulfide positive electrodes

- TiS₂ target sputtered under Ar
- Amorphous film with columnar growth. No annealing required.

Homogeneous composition over the whole thickness. Composition close to TiO_{0.6}S_{1.6}

Li/LiPON/TiOS microbatteries

GITT measurements on an all-solid-state stack:

B. Fleutot, B. Pecquenard, F. Le Cras, B. Delis, H. Martinez, L. Dupont, D. Guy-Bouyssou, *J. Power Sources*, 196, 10289-10296 (2011)

Li/LiPON/TiOS microbatteries

Galvanostatic cycling (100 μA·cm⁻² or ~ 1C rate)

- **High volumetric capacity:** ~ 90 μ Ah·cm⁻²· μ m⁻¹ >> 64 μ Ah·cm⁻²· μ m⁻¹ for LiCoO₂
- Moderate fading (-0.02%/cycle)
- Stable coulombic efficiency ~99.7%
- Less than 2%/year of self-discharge

B. Fleutot, B. Pecquenard, F. Le Cras, B. Delis, H. Martinez, L. Dupont, D. Guy-Bouyssou, *J. Power Sources*, 196, 10289-10296 (2011)

Another way to improve capacity: conversion reactions

■ General mechanism [1]: $M_aX_b + (b \cdot n)Li \Rightarrow aM + bLi_nX$ M: transition metal X: N, O, F, P, S,...

Ex: CuO + 2Li \rightleftharpoons Cu⁰ + Li₂O

Main features:

- Insertion of 2 to 6 Li⁺ per formula unit
 high specific capacity
- Numerous materials can react with Li according to a conversion mechanism
 - ➡ wide range of working potential
- Large hysteresis between Li insertion /deinsertion process (depending on the M-X bond)

[1] J. Cabana, R. Palacin, L. Monconduit et al., Adv. Mater., 22, E170-E192 (2010);
 [2] M. Armand and J.-M. Tarascon, Nature, 451, 652 (2008)
 [3] J. M. Tarascon et al., C.R. Chimie, 8, 9 (2005);
 [4] S. Grugeon et al., J. Electrochem. Soc., 148, A285 (2001)

Iron disulfide positive electrodes

Reaction	E _{conversion}	Capacity	Capacity
	(V)	(mAh.g ⁻¹)	(µAh.cm⁻².µm⁻¹)
2 Li + CuO → Li ₂ O + Cu	1.4	670	426
2 Li + Cu ₂ O → Li ₂ O + 2 Cu	1.5	375	225
2 Li + CuS → Li ₂ S + Cu	1.7	560	257
4 Li + FeS ₂ → 2 Li ₂ S + Fe	1.5	894	435

Why to choose FeS₂?

- Theoretical volumetric capacity > 400 µAh·cm⁻²·µm⁻¹ (LiCoO₂ x 6)
- Working potential suitable for envisaged applications
- Moderate hysteresis compared to oxides or fluorides
- Ability to be prepared in a thin film form
- No polysulfide dissolution (solid electrolyte)
- Large volume change (+180%) upon lithiation

Iron disulfide positive electrodes

FeS₂ target sputtered under Ar:

- Well-crystallized thin films
- No pyrrhotite impurity detected in the film
- Fe²⁺ only (Mössbauer) → S₂²⁻ species
- FeS₂ thin films are quite dense (91 % of the theoretical density) and exhibit a columnar
- Good electronic conductivity (51 S.cm⁻¹)

V. Pelé, F. Flamary, L. Bourgeois, B. Pecquenard, F. Le Cras, Electrochem. Comm., 51, 81-84 (2015)

Li/LiPON/FeS₂ microbatteries

Electrochemical behavior of Li/LiPON/FeS₂ all-solid-state cells :

- First discharge:
 - High capacity 330 µAh·cm⁻²·µm⁻¹
 - Two steps at 1.7 and 1.5 V
- Only 1.8 % of irreversible capacity during the 1st cycle
- Subsequent discharges:
 - Two well-defined steps at 2.15 and 1.5 V
 - Presence of less prominent intermediate reactions complex processes

V. Pelé, F. Flamary, L. Bourgeois, B. Pecquenard, F. Le Cras, *Electrochem. Comm.*, 51, 81-84 (2015)

NiPS Summer School, Perugia, Sept. 05, 2019

FeS₂ electrodes (365 nm)

Microbatteries

Li/LiPON/FeS₂ microbatteries

Electrochemical behavior of Li/LiPON/FeS₂ all-solid-state cells :

- Limited voltage hysteresis even at high regimes (100 μ Ah.cm⁻² \leftrightarrows 1C rate)
- Excellent cycle life with a fading of only -0.0048 %/cycle
- No marked detrimental effect of the large volume expansion (+180%) during Li insertion
- V. Pelé, F. Flamary, L. Bourgeois, B. Pecquenard, F. Le Cras, Electrochem. Comm., 51, 81-84 (2015)

Solder reflow tolerant microbatteries

Lead-free (Ag-Sn) solder reflow temperature profile

- Si as negative electrode is very attractive due to
 - a high volume capacity (830 μAh.cm⁻².μm⁻¹)

4 Si + 15 Li⁺ +15 e⁻ ⇔ Li₁₅Si₄

- a low insertion/deinsertion voltage [0.0-1.0] V/Li⁺/Li
- an easy deposition by sputtering under Ar

📕 But ...

Silicon anode for Li-ion microbatteries

- High cycle life: 1500 cycles with no capacity loss
- Coulombic efficiency > 99.99 %
- Volume expansion (+280%) ⊥ to the substrate
- No mechanical damage even after 1500 cycles for 100 nm thick Si electrodes

Lithium		
Liponb		
Li,Si		
	Cugent-collector	n
	Barrier layers	
	Substrate	0.6 µm

After 1500 cycles

LiTiOS cathodes for Li-ion microbatteries

- Sputtering of a homemade LiTiS₂ target \Rightarrow LiTiOS thin films 900 nm Dense & homogeneous thin films LiTiOS **RBS** Energy / keV Barrier 2 Barrier 1 Si Ti Composition : $Li_{1,2}TiO_{0,5}S_{2,1}$ Counts Auger 100 C substrate Si CI Si (0) Si Atomic concentration / % CI 80 SiO Channels Contains only Ti⁴⁺ and S²⁻ species 60-SiN LiTiOS **XPS** 40 Ti 2p_{3/2-1/2} S 2p_{3/2-1/2} Ti4+ (TiOS) 20 Ti4 (TiO₂) Ti⁴⁺ 600 800 1000 200 400 1200 0 (TiS₂) Sputter depth / nm 470 468 466 464 462 460 458 456 454 172 170 168 166 164 162 160 158 Binding energy (eV) Binding energy (eV) * Collaboration H. Martinez, IPREM Pau, France
- Oxygen uptake during the deposition

F. Le Cras, B. Pecquenard, V.P. Phan, V. Dubois, D. Guy-Bouyssou, Adv. Energy. Mater., 5, 1501061 (2015)

LiTiOS cathodes for Li-ion microbatteries

Electrochemical behavior of Li/LiPON/'LiTiOS' all-solid-state cells :

- First charge: $\text{Li}_{1.2}\text{Ti}^{(4+)}O_{0.5}S_{2.1}^{(2-)} \iff \text{Ti}^{(4+)}O_{0.5}S_{0.9}^{(2-)}S_{1.2}^{(-)} + 1.2 \text{ Li}^+ + 1.2 \text{ e}^-$
- Capacity 65 (80) µAh·cm⁻²·µm⁻¹
- Perfect cycle life
- Coulombic efficiency ~ 99.99%
- Increased polarization near the end of charge

End of 1st charge: 3.2V

End of 1st discharge: 2.0V

Performance of Si/LiPON/LiTiOS Li-ion microbatteries

- 2 V solid state Li-ion microbatteries:
 - 600-1100 nm Li_{1.2}TiO_{0.5}S_{2.1}
 - 1400 nm LiPON

9:1 thickness ratio \Leftrightarrow equivalent surface capacity

📕 65-120 nm Si 🔸

 $Li_{1.2}TiO_{0.5}S_{2.1} + 0.32 Si \Leftrightarrow TiO_{0.5}S_{2.1} + 0.08 Li_{15}Si_4$

8.7 mm² active area embedded in a 5x5 mm² LGA package

Performance of Si/LiPON/LiTiOS Li-ion microbatteries

Tolerance to short-circuiting

After 3 successive SR treatments

NiPS Summer School, Perugia, Sept. 05, 2019 F. Le Cras, B. Pecquenard, V.P. Phan, V. Dubois, D. Guy-Bouyssou, Adv. Energy. Mater., 5, 1501061 (2015) 44

New designs: 3D solid state microbatteries

- From planar to high aspect ratio electrodes ⇒ ¬ Areal capacity for a given electrode thickness
- **Capacity** \propto thickness (amount) of electrode material for a given device size
- Limitation in the ionic/electronic transport do not allow to use electrode thicker than 5-10 µm
- Keep usual film thicknesses, but enhance the surface area x A

New designs: 3D solid state microbatteries

New preparation and deposition techniques required for high-aspect ratio '3D' microbatteries

- Substrates: Deep reactive ion-etching (aspect ratio 20 80)
- Active layers (<100 nm): Atomic layer deposition or Low-pressure CVD</p>
- Li₃PO₄ not LiPON

- No complete 3D solid-state cell achieved yet
- Electrode capacity (TiO₂ 100 nm AR: 50): 370 µAh.cm⁻²

NiPS Summer School, Perugia, Sept. 05, 2019 M. Lériche, Adv. Energy Mater., 7, 1601402 (2017)

Geometric engineering of battery materials + advanced microfabrication techniques (CEA LETI).

- Transparent TFB structures/design: application driven insofar as resolution is correlated to viewing distance.
- Here: Pattern covering 20-60% total transmittance for >50cm viewing distance applications

Transparent TFB structures/design

TFBs (1"x1")

Top view (SEM/EDS) BSE 600 un TFB LIPON X-section (SEM/EDS) LiCoO

Features:

- Capacity: up to 500 µAh (20 x 20 cm²) ⇔ 60% transmittance
- Nominal voltage: 3,4 V
- Low capacity fading after 50 cycles (-0.1%/cycles)
- Linear relationship between capacity, LCO surface area and transmittance

Discharge capacity variation during first 100 cycles (CA charge at 4,2V, galvanostatic discharge at C/2)

Summary

- All-solid-state microbatteries are mostly dedicated to applications requiring a reduced footprint, a high level of integration, and a limited embarked energy (10 µWh – 1 mWh)
- Manufacturing process similar to those used in the microelectronics industry (sputtering, evaporation, photolithography,...) is quite expensive compared to other battery manufacturing process
 high throughput is compulsory:
 - Thin / High volumetric capacity electrodes
 - Reduced number of manufacturing steps
 - The smaller the footprint the higher the throughput...
- (Li)/LiPON/LiCoO₂ system is the most common active stack in commercial cells
- Particular specifications (voltage, areal capacity, thermal resistance, shape, cost...) can be met by developing appropriate materials, patterning process, process flow.

Summary

- So far, no high capacity 3D all-solid state microbatteries have been achieved. Besides, their cost should be even higher than conventional planar cells.
- Other important topics to consider (not detailed above):
 - Electrode/electrolyte interfaces (reactivity, charge transfer)
 - Alternative materials to LiPON with higher ionic conductivities

Questions ?