

Functional materials in secondary non aqueous Li/Na-batteries

Sergio Brutti^{1,2}

¹Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5 00185 Roma (IT)

² Istituto dei Sistemi Complessi – Consiglio nazionale delle Ricerche, UOS Sapienza, via dei Taurini 00185 Roma (IT)

Li-ion batteries: intro

Portable electronics

Power tools

Can store up 3 times more energy compared to Ni-MeH

Transportation

Performance (> energy)

> Safety (< hazard)

Smart grid

Scalability (< costs) (> calendar life) (< environmental costs)

Graphite intercalation: theoretical capacity C (ox) + (1/6) e^- + (1/6) $Li^+ \rightarrow$ (1/6) LiC_6 (red) $Q(C, 1 mol) = \frac{1}{6} \cdot F/Coulomb$ $Q_{th} = \frac{Q(C, 1 \text{ mol})}{AW(C)} \cdot \frac{1000}{3600} = \frac{(1/6) \cdot F}{12 \text{ mol/g} \cdot 3.6} = 372 \text{ mAg}^{-1}$ Lattice(ox) + e^{-} + Li⁺ \rightarrow Lattice(red) Theoretical specific capacity (Host^{ox}) + $xLi^+ + xe^- \rightarrow Li(Host^{red})$ $\left\{Q_{th} = \frac{x \cdot F}{(3.6 \cdot MW_{Host})}\right\} / mAg^{-1}$ KSC @

Graphite intercalation: redox potential C (ox) + (1/6) e^{-} + (1/6) $Li^{+} \rightarrow$ (1/6) LiC_{6} (red) e^+ Li⁺(ox) \rightarrow Li(red) Plating reaction of metallic lithium C / liquid electrolyte (solvent & Li⁺ salt) / Li $= \frac{C + \frac{1}{6}e^{-} + \frac{1}{6}Li^{+} \to \frac{1}{6}LiC_{6} = x 6 + \frac{1}{6}LiC_{6} = \frac{1}{$ $Li \rightarrow Li^+ + e^-$ = $\Delta_r G^o = \Delta_f G^o (LiC_6)$ $\Delta_f G^o (LiC_6) = -n \cdot F \cdot \Delta E^o$ Fem? $6 \text{ C} + \text{Li} \rightarrow \text{LiC}_{6}$ $E^{o}(C/LiC_{6}) = -\frac{\Delta_{f}G^{o}(LiC_{6})}{n \cdot F} = -\frac{-15.1\frac{kJ}{mol}}{1 \cdot 96485} = 0.156 V vs. Li^{+}/Li$

, IÉC @

Li-ion battery: basic constituents

Li-ion battery: negative electrodes

Li-ion battery: negative electrodes families

Negative electrodes: graphite

Specific capacity / mAhg⁻¹

e.g. in operando XRD

In operando experiments

The study of the electrochemical lithium incorporation into materials can been carried out by in operando techniques

Carbon additive

Glove box

Electrode mixture (50% 30% 20%)

Polymer

binder

Casted into self standing electrode foils and cut in disks

Dried in vacuum and coupled with separator, lithium coin and electrolyte

alanate pristine material

Assembled into opto-cells

In operando XRD experiments

The in operando analysis implies the simultaneous electrochemical cell discharge/charge and XRD tests

Negative electrodes: graphite in Li cells

Graphite

(+)Graphite / electrolyte / Lithium (-)

Negative electrodes: graphite in Li cells

(+)Graphite / electrolyte / Lithium (-)

Lithium secondary half cell

Electrolytes for Li-ion batteries: stability

(+)(e-P)Mat / el. /)(e-N)Mat (-)

J = 0

e-P)

The stability window limits of the electrolyte should exceed the cathodic and the anodic thermodynamic potentials of the electrodes

V

e-N)

Irreversible degradation of electrolytes

Electrolyte decomposition over graphite

(+)Graphite / electrolyte / Lithium (-)

SEI formation analysis

- 1. The electrolyte decomposes at 0.8-0.7 V vs. Li
- 2. The decomposition occurs only in the first cycle
- 3. This irreversible reaction leads to capacity loss
- 4. This irreversible reaction does not alter the lithium intercalation into the graphite lattice

Post-mortem sample preparation procedure

The preparation of the samples analysed ex situ requires a multistep procedure

Post-mortem TEM sample preparation procedure

The preparation of the samples analysed by TEM requires a multistep procedure

 7				
10	- 1	- 1	E	
		y 1		

Solid electrolyte interphase over graphite

SEI formation mechanism

KC C

an

of

а

forms

Negative electrodes: MgH₂

Hydrides conversion reactions: advantages

(+)MgH₂/ electrolyte / Lithium (-)

Post-mortem XRD sample preparation procedure

The preparation of the samples analysed by TEM requires a multistep procedure

MgH₂: ex situ reaction mechanism

(+)MgH₂/ electrolyte / Lithium (-)

MgH₂: XRD study

First discharge

MgH₂: TEM study

MgH₂ fully discharged at 200 mV in a lithium cell

Nature of the capacity losses

Alloying reactions and volume changes

Silicon cF8 SG 227

Collector: Cu

Theoretical capacity: 3579 mAh/g

Nominal voltage: 0.2-0.5 V vs. Li

$$Si + \frac{15}{4}Li^+ + \frac{15}{4}e^- \rightarrow \frac{1}{4}Li_{15}Si_4$$

Si volume expansion upon lithiation +320%

In operando Raman experiments

The in operando analysis implies the simultaneous electrochemical cell discharge/charge and Raman tests

Lithium loading into the silicon lattice

Buffering the volume by going nano

Morphological changes of Si upon lithiation

Hierarchical materials can expand and shrink buffering the stress/strain

Li-ion battery: positive electrodes

High potential: E° close but below the anodic stability of the electrolyte

Invariant lattice: stable structure upon lithiation

High reversibility: electrochemical reaction in ch/dsch

Intercalation chemistry at the P-E

Layered positive electrodes: LiCoO₂

LiCoO₂ / LCO cl2 SG 229

Collector: Al

Theoretical capacity: 137 mAh/g (0.5 Li_{eq})

Nominal voltage 3.3-4.3 V vs. Li $Li_{\frac{1}{2}}CoO_{2}(03) + xLi^{+} + xe^{-} \rightarrow Li_{\frac{1}{2}+x}CoO_{2}(03)$

In operando XAS experiments

The in operando analysis implies the simultaneous electrochemical cell discharge/charge and XAS tests at synchrotrons

Homogeneous/heterogeneous intercalation: LiCoO₂

Homogeneous/heterogeneous intercalation: LiCoO₂

Layered positive electrode materials

Stoichiometry of the LiMO₂-layered phases drives the stacking disorder and the electrochemical lithium de-intercalation/intercalation.

Olivine lattice: diffusion in 1D channels

LiFePO₄ / LFP oP28 SG 62

Collector: Al

Theoretical capacity: 170 mAh/g (1 Li_{eq})

Nominal voltage: 3.45 V vs. Li

$FePO_4 + Li^+ + e^- \rightarrow LiFePO_4$

Olivine intercalation mechanism

$FePO_4 + Li^+ + e^- \rightarrow LiFePO_4$

LiFePO₄ diffusion coefficients

Particle size to shorten diffusion paths

Particle morphology to enhance (001) diffusion

Ipervalent cation doping to induce Li⁺ voids

Redox inactive doping to stabilize the lattice

Sulphur – anionic redox chemistry at the positive electrode

Sulphur – long chain polysulphide and solubility

Sulphur – mitigation strategies

Electrolytes for Li-ion batteries requirements

Liquid electrolytes

Solvents: requirements

Solvents: thermodynamic background

Solvents: HOMO-LUMO energy levels

Liquid electrolytes: solvents

Salts: requirements

Salts: thermodynamic requirements

Lithium salts for electrolytes

New salts: Li FAP

In the last decade a quite large number of innovative salts has been proposed: Li bis-(oxalato)borate (LiBOB), Li bis(malonato)borate (LiBMB), Li (malonato oxalato)borate (LiMOB), Li pentafluoroethyl trifluoroborate (LiC₂F₅BF₃), Li tetrafluoro(oxalate)phosphate (LiPF₄C₂O₄)

Li⁺ PF₆⁻

Li⁺ (R)_nPF_{3-n}-

Li perfluoro-alkyl-fluorophosphates are hybrid organic-inorganic salts

Dissociation, self-dissociation & hydrolysis

Sodium ion cell

Similar to the lithium analogue Li-ion cell. It exploits the intercalation and de-intercalation of sodium ions into host materials

Na-ion battery: positive electrodes families

The Na⁺ aprotic electrolyte challenge

Similar solvents (organic carbonates) and salts compared to Li-Ion batteries

The SEI-challenge

Solid electrolyte interphases grown on carbon electrodes show poor stability upon cycling

Modified electrolytes with fluorocarbonates improve stability

Post-mortem XPS sample preparation procedure

The preparation of the samples analysed by XPS requires a multistep procedure

Hard carbon surfaces upon cycling

HCs are obtained by pyrolysis of organic matrix above 850°C in reducing environment.

(+)HC/EC:PC:FEC NaTFSI/ Na (-)

The consolidation of the SEI layer over HC in Na-batteries lasts for many cycles before a full stabilization of the interface.

