

Efficient Memory Controller Architectures and their Integration in Transprecision Compute Platforms

Christian Weis weis@eit.uni-kl.de

Content

- The Transprecision Concept
- **Overview on Memory Types**
- The Importance/Challenges of Memories in Computing
- The DRAM Device
- The Refresh Challenge and Optimizations
- Improvement of Reliability
- Power Down Modes
- The Memory Controller
- Conclusion

•

Content

The Transprecision Concept

- **Overview on Memory Types**
- The Importance/Challenges of Memories in Computing
- The DRAM Device
- The Refresh Challenge and Optimizations
- Improvement of Reliability
- Power Down Modes
- The Memory Controller

The Transprecision Computing Paradigm

- Traditional computing systems and applications
 - Conservative assumption: each calculation must be accurate
 - Hardware must 100% accurate

SEARCH GROUP

- Computation is more and more limited by power wall
- ⇒ Shift from traditional computing paradigms becomes mandatory

Transprecision compute paradigm

- Spend just the right amount of energy required for a particular operation
- Just enough precision, i.e. dynamic adoption to less precise arithmetic and even embrace errors incurred by underpowered or new circuit technologies
- Off-load computation to low power HW units

Focus in this talk on Memory (DRAMs)

Flooding of Data

Our world is creating more bits than ever: in 2011, more than 1.8 zettabytes (1.8 x10²¹), growing by a factor of 9 in 5 years

New computing paradigms \Rightarrow near-memory, in-memory computing

Content

- The Transprecision Concept
- **Overview on Memory Types**
- The Importance/Challenges of Memories in Computing
- The DRAM Device
- The Refresh Challenge and Optimizations
- Improvement of Reliability
- Power Down Modes
 - The Memory Controller

Memory Technologies

Different memory types

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

1

Different storage mechanisms

Memory Properties

Trade-offs: capacity, latency, reliability

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

•

Memory Hierarchy in Computing

Capacity, latency, cost

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

19

Source: Western Digital

Content

- The Transprecision Concept
- **Overview on Memory Types**
- The Importance/Challenges of Memories in Computing
- The DRAM Device
- The Refresh Challenge and Optimizations
- Improvement of Reliability
- Power Down Modes
- The Memory Controller

Importance Memory e.g. Google Tensor ASIC

ASIC in use in data centers since 2015

OF FCTRON

SYSTEMS DESIGN RESEARCH GROUP

65.536 8-bit MAC matrix multiply units -> 92 TeraOps/second

(9	Unified Buffer for Local Activatio l6Kx256x8b = 24 M 29% of chip	ns MiB)	Matrix Multiply U (256x256x8b=64K l 24%	nit MAC)
D R A M port ddr3 3%	Host Interf. 2%	Accumulators D (4Kx256x32b = 4 MiB) 6% A		
	Control 2%	Activation Pipeline 6%		M
	PCIe Interface 3%	%		3%

Operational Intensity: Ops/weight byte (log scale)

TeraOps/sec (log scale)

Importance Memory e.g. Autonomous Driving

- Bandwidth ADAS autonomous level 4 & 5 : 400 1024 GB/s
- Memory Capacity autonomous level 4 & 5 : 18 24 GB
- Reliability: temperature 105°C 125°C
- Mixed criticality system: guaranteed latency Security e.g. row hammer

DRAM	Peak Bandwidth	Low Energy	Reliability	Automotive Grade (Temp.)	
LPDDR4	0	++	+	yes	
GDDR5X/6	+	0	+	yes	
HBM	++	+	0	no	
marginal (o), medium (+), high (++)					

Driving Into the Memory Wall: The Role of Memory for Advanced Driver Assistance Systems and Autonomous Driving

<u>M. Jung</u>, S. A. McKee, <u>C. Sudarshan</u>, <u>C. Dropmann</u>, <u>C. Weis</u>, <u>N. Wehn</u>. *ACM International Symposium on Memory Systems (MEMSYS 2018)*, October, 2018, Washington, DC, USA.

Energy Cost Computing @ 45nm

Integer	
Add	
8 bit	0.03pJ
32 bit	0.1pJ
Mult	
8 bit	0.2pJ
32 bit	3.1pJ

OFI ECTRONIC

ESEARCH GROUP

FP		
FAdd		
16 bit	0.4pJ	
32 bit	0.9pJ	
FMult		
16 bit	1.1pJ	
32 bit	3.7pJ	

Memory	
Cache	(64bit)
8KB	10pJ
32KB	20pJ
1MB	100pJ
DRAM	1.3-2.6nJ

Instruction Energy Breakdown

45nm, 0.9V, Horowitz ISSCC 2014

Energy Cost Computing @ 28nm

Fetching operands costs more than computing on them

Source: Nvidia

Memory Energy Contribution

Source Subhasish Mitra

Relative energy cost

EARCH GROUP

- SRAM vs. compute $\sim 10x 100x$
- DRAM vs compute ~ 500x
- Flash vs. compute ~ 1000x

Processor/DRAM Frequency Evolution

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

Processor Performance Evolution

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

Source: Hennessy, Patterson

DRAM Chip Failures

DRAM's Damning Defects—and How They Cripple Computers

An investigation into dynamic random-access memory chip failure reveals surprising hardware vulnerabilities

By Ioan Stefanovici, Andy Hwang & Bianca Schroeder Posted 23 Nov 2015 | 16:00 GMT

IEEE Spectrum Nov. 2015

Analysis of dozens high-performance computing clusters

- 300 terabyte-years of DRAM usage
- System failures: not software problems, but more than 60% of machine outage results from hardware issues
- Most common hardware problem was faulty DRAM

DRAM: permanent errors, soft errors, retention errorsRedundancy, ECC, refresh

•

Content

The Transprecision Concept **Overview on Memory Types** The Importance/Challenges of Memories in Computing **The DRAM Device** The Refresh Challenge and Optimizations Improvement of Reliability **Power Down Modes** The Memory Controller

The DRAM Cell – A simple Model

- Data is stored by capacity
- Cell is selected with access transistor
- Charged capacitor represents a `1'
- Discharged capacitor represents a '0'
- Memory is volatile
- Cell is leaky: refresh needed

The DRAM Device

Sub Arrays

MWL

PSA

LWL

LBL

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

Bank 0

Memory Arrays

odel

Row

Column Decoder & SSA

Page Size

Banks

- Read, Write
- Precharge, Activate
- Refresh

E.

н

LWL

Transistor

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP B0 B2 B4 B6

DRAM Commands

ACT: Activates a specific row in a specific bank (sensing into PSA)*tRCD*RD: Read from activated row (prefetch from PSA to SSA and burst out)*tCL + tBURST*PRE: Precharges set LWL=0 set LBL=VDD/2*tRP*REFA: DRAM cells are leaky and have to be refreshed*tREFI & tREF*

Samsungs 8Gb 20nm DDR4 Die

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP **Design and Technology Trends**

DRAM Technology Roadmap

DRAM Die Size & Density Trend

DRAM Subsystem Evolution

DIMM Based: General Purpose Computers e.g. DDR3, DDR4

() Computational Units

Package on Package (PoP):

Soldered on top of the MPSoC. Smartphones *e.g. LPDDR3, LPDDR4*

3D/2.5D-Integrated:

Stacked on Logic or Silicon Interposer by means of TSVs *e.g. Wide I/O, HBM*

Buffer on Board:

Memory Controller on Buffer Chip, Serial Connection e.g. FBDIMM, IBM CDIMM, Intel SMI/SMB

Memory Cube:

3D-Stacked, Memory Controller on Bottom Layer, Serial Interconnect (SerDes) *e.g. HMC, SMC*

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

DRAM Subsystem Performance

Detailed DRAM Energy Distribution

DRAM Power Breakdown for Twitter Memcached Application* 2GB DDR3

(*) A High-Level DRAM Timing, Power and Area Exploration Tool, O. Naji, A. Hansson, C. Weis, M. Jung, N. Wehn *IEEE International Conference on Embedded Computer Systems Architectures Modeling and Simulation (SAMOS)*, July 2015

DRAM in Transprecision Computing

Minimize energy/DRAM access

Reduced precision implies

Reduced DRAM power/energy/latency, increased DRAM bandwidth

Minimize Refresh

- Impacts energy, latency and reliability
- Temperature aware refresh, bank wise refresh, optimized row-granular refresh, approximate DRAM
- ECC

Minimize row misses (Activate, Precharge)

- Impacts latency, bandwidth, energy
- Scheduling in memory controller
- Address mapping

Sophisticated power-down modes Near-Memory or In-Memory Computing

•

Content

- The Transprecision Concept
- **Overview on Memory Types**
- The Importance/Challenges of Memories in Computing
- The DRAM Device
- The Refresh Challenge and Optimizations Improvement of Reliability Power Down Modi
- The Memory Controller

Refresh/Temperature Challenge

ARCH GROUP

Exponential temperature/leakage current behavior \rightarrow shorter refresh periods

Refresh/Temperature Challenge

Refresh Performance Impact

J. Liu, et al. RAIDR: Retention-Aware Intelligent DRAM Refresh, ISCA 2012 I. Bhati, et al. DRAM Refresh Mechanisms, Trade-offs and Penalties, IEEE Trans. 2015

4 TB DDR3 DRAM Stand-by 300W

Paul Rosenfeld (IBM Server on display at Supercomputing)

Retention Errors

- 1. Drain Leakage
- 2. Sub-Threshold leakage
- 3. Cell Capacitor Leakage

Cross-Talk/Coupling

- Bitline to bitline
- Wordline to wordline
- Wordline to bitline
- Bitline to cell

Challenge

H

- Characterization of retention error behavior of DRAMs
 - Vendor: over pessimistic

Refresh Optimizations

Following optimizations will be addressed:

- Temperature-aware Fine-granular Refresh
 - e.g. per bank/per layer
- Approximate DRAM
 - disable or reduce Refresh-rate
- Optimized Row-Granular Refresh (ORGR)
 - not relying on Auto-refresh

DRAMs in 3D MPSoC's

Memory bandwidth/energy bottleneck ⇒ Wide I/O DRAM, HBM, HMC
E.g. WIOMING 3D Magali (LETI): baseband processing, accelerators, CPUs, DRAM
65nm, 72mm², 1250 TSV, heaters/sensors

Wide I/O DRAM (50nm):

256Mb, 512 I/Os, 1Gb, 4 Channels, SDR@200MHz, 12.8 GBps

3D-DRAM Retention Error Model

Measurements@WIOMING
 On-chip heaters and sensors
 Different refresh periods

 Test a: Disable refresh for 1s
 Test b: 128ms – 202ms

 Different temperatures

 80°C – 104°C

 Different data patterns

 0xFF...FF, 0xAA...AA, 0x55..55, random

Variable Retention Times (VRT)

3D-DRAM Retention Error Model OELECTRONIC **RESEARCH GROUP**

Data Pattern Dependency (DPD)

STEMS DESIGN

3D-DRAM Retention Error Model

750 2000 2 row address

95 °C 🔻

80 °C C

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

- Modelling of Data Pattern Dependency
- Modelling of Variable Retention Times

Refresh in Stacked MPSoC

- Temperature = 100°C: refresh period every 8 ms
- Refresh command issued every: 488ns
- Refresh duration: 130ns

Temperature-Aware Bankwise Refresh

M. Sadri, M. Jung, C. Weis, N. Wehn and L. Benini, "Energy optimization in 3D MPSoCs with Wide-I/O DRAM using temperature variation aware bank-wise refresh, DATE'14

Approximate DRAM

Lowering the refresh-rate or completely switching off refresh

Consider DRAM device as a stochastic model that includes process variations

Data Lifetime

(First errors happen after e.g. 1s)

Switch Off Refresh

- If data lifetime is smaller than
 required refresh period
- If data lifetime is larger than required refresh period AND application has some robustness w.r.t. errors

Frame-buffer (GPUs) Separation of DRAM Stack into **unreliable** and **reliable** regions

EARCH GROUP

- Unreliable region: bottom DRAM layer with disabled refresh
- Reliable regions: higher DRAM layers with temperature aware refresh

Cross Layer Refresh Policy

Access unreliable region while reliable region is refreshed

Matthias Jung, Éder Zulian, Deepak M. Mathew, Matthias Herrmann, Christian Brugger, Christian Weis, and Norbert Wehn. 2015. Omitting Refresh: A Case Study for Commodity and Wide I/O DRAMs MEMSYS '15

Commodity DRAMs - Measurement Platform

- Precise control of temperature (heating and cooling) of DRAM SO-DIMMs with JEDEC conform adapter
- Temperature range: 25-90°C, accuracy +/-2°C
- Precise current measuring for V_{dd} (1.2V), V_{PP} (2.5V) domain, +/-0.5mA accuracy
- Interface frequency up to 1.2 GHz

Retention Time Measurements¹

ESEARCH GROUP

- Main reference in literature about retention errors published by Samsung²
- Measurements: 1-3 orders of magnitude better retention error behaviour

 DRAM can hold data much longer than specified, even at high temperatures

¹ Values normalized to total DDR3 DRAM size: 512 MB (Total number of DRAM cells: 4.294.967.296) ² Kim and Lee, *A New Investigation of Data Retention Time in Truly Nanoscaled DRAMs*, 2009 Retention behavior depends on cell leakage, cross talk, process variations, temperature, cell type, data pattern

ICROELECTRONIC YSTEMS DESIGN ESEARCH GROUP **DDR4 Retention Time Measurements I**

DDR4 Retention Time Measurements II

Unsymmetrical error behavior dependent on cell type (true-cell, anti-cell)

RCH GROUP

 $1 \Rightarrow 0$ flip much more likely than $0 \Rightarrow 1$ flip

Drawbacks of Auto-Refresh

- AREF lacks flexibility
- No access to internal refresh row counter
- No rows can't be skipped
- The complete DRAM has to be refreshed in the same rate

European Patent Register

English

Français

Contact

Deutsch

found if I click on the "Show

FCTRONIC

EARCH GROUP

sches mt

Contraction of the local distribution of the	4 About European Patent Register	Other EPO online serv	vices 🔻	Register Alert lo
	Smart search Advanced search	Help		
	EP3454337	About this file:	: EP3454337	
	European procedure About this file	🖉 Refine search	↓ ST36 ② Show history	🔒 Print
	Legal status	EP3454337 - USIN	NG RUNTIME REVERSE ENGINEERING TO OPTIMIZE DRAM REFRESH (Right	-click to bookmark
	Federated register	this link]		
	Event history	Status	The patent has been granted	
	Citations		Status updated on 09.08.2019	
	Patent family		Database last updated on 26.08.2019	
	All documents	Most recent event i	09.08.2019 (Expected) grant public on 11	shed J.09.2019 [2019/37]
	Quick help –	Applicant(s)	For all designated states TU Kaiserslautern	
	→ What happens if I click the ST36 button? → What kind of information can be		Gottlieb-Daimler-Strasse 67663 Kaiserslautern / DE	

[2019/11]

t_{RAS min} timer is present for additional saftey and for auto-precharge operations (RDA/WRA)

Minimum t_{RAS} for Vendor A

Vendor specific implementations

DELECTRONIC

SEARCH GROUP

Reverse engineering technique performed during DRAM initialization, or during normal operation

 t_{RAS} = 37.5 ns t_{RAS}^{min} = 20.7 ns

RGR vs ORGR (2Gb x16 DDR3)

RGR

ORGR

Performance and Energy Savings

Refresh Fechnique	t _{RFC}	Refresh Energy
Auto Refresh	262.5	186.24
RGR	292.5	230.48
ORGR	146.25	209.72

- Measured for 4Gb x16 DDR3 DRAM from Vendor A
- Refreshing the complete DRAM

Average Response Latency [ns]

Simulation Results for a 16Gb DRAM

Performance Energy 100 250 1X mode 2X mode 4X mode ■ 1X mode ■ 2X mode ■ 4X mode 90 80 200 Total Energy [mJ] 70 60 150 50 40 100 30 20 50 10 0 0 RGR RGR select. ORGR select. No Refresh Auto Refresh ORGR No Refresh Auto Refresh RGR ORGR RGR select. ORGR select.

Application with a Sparse Access Pattern using AREF and ORGR

•

Content

- The Transprecision Concept
- **Overview on Memory Types**
- The Importance/Challenges of Memories in Computing
- The DRAM Device
- The Refresh Challenge and Optimizations
- **Improvement of Reliability**
- Power Down Modes
- The Memory Controller

Asymmetric Retention Behavior

Can we exploit asymmetry to increase DRAM's reliability

Consider memory as noisy communication channel

Theoretical measure for the quality of a noisy channel: channel capacity C

C = I(X;Y) = H(X) - H(X|Y)

with H(X) being the entropy of a random variable X e.g. binary entropy function

$$H(p) = -p \log_2 p - (1-p)\log_2(1-p)$$

 C is highest information rate (in units of information per unit time) that can be achieved with arbitrarily small error probability **Information Theory**

Symmetric retention behavior: *Binary Symmetric Channel (BSC)*

Asymmetric retention behavior: Z-Channel

$$C_Z = \log_2\left(1 + (1-p) \cdot p^{\frac{p}{1-p}}\right) \approx 1 - \frac{1}{2}H(p)$$

Larger Channel Capacity

- Larger reliability if internal cell structure (true-cell, anti-cell) is known
- More efficient ECC techniques possible
- Appropriate data representation: e.g. small dynamic range C2 versus sign/magnitude

Challenge

Internal structure normally not known (vendor secret)

46

Reverse Engineering

- Fill DRAM with 1s
- Disable refresh for 20 hours, additionally heat up to 80°C

Vendor Specific Storage

DRAM with true-cells only

- Stored 1 leaks
- Bitmap is black

DRAM with anti-cells only

Stored 1 can not leak since it's stored as 0 Bitmap is white

DRAM with mixed-cells Bitmap is black/white

Vendor A

Increase DRAM's Reliability

Use of ECC techniques: e.g. (72, 64) SEC/DED hamming code Simple but efficient technique to increase reliability:

- Example true-cell: flip data of DRAM burst if there are more ones than zeros
- Reduce Hamming to SEC Hamming (72,64) i.e. 64 bit data, 7 bit parity and 1 bit for storing flip information

Content

- The Transprecision Concept
- **Overview on Memory Types**
- The Importance/Challenges of Memories in Computing
- The DRAM Device
- The Refresh Challenge and Optimizations
- Improvement of Reliability
- **Power Down Modes**
- The Memory Controller

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

DRAM Power-Down Modes

Three power-down modes

- Active Powerdown (PDNA)
- Precharge Powerdown (PDNP)
- Self-Refresh (SREF)

When to enter which of these modes?

E.g. Timeouts

Power-Down Modes

<u>Active</u>: at minimum one bank is active, no power down (cke=1), the controller has to schedule the refresh

<u>Idle</u>: all banks are closed and precharged, no power-down (cke=1), no internal refresh. The DRAM changes the state from Active to idle by issuing a precharge command

Active Power-Down: at minimum one bank is active and no internal refresh Precharge Power-Down: all banks are closed and precharged and no internal refresh Self-Refresh: all banks are precharged and closed, the DRAM internal self-timed refresh is triggered

۰

Power-Down Optimization

EARCH GROUP

Timeouts are usually used to enter power down

- SREF entry provokes refresh: high power
- Already observed by Schmidt [ICSD'09]

Avg. of 22 MediaBench and CHStone benchmarks

Power-Down Optimization

ESEARCH GROUP

Staggered Power-Down^[1]

- Instead of timers we use triggering of refresh
- Go to PDNA ASAP

 After a refresh go to the next better power down state (PDNP, SREF)
 Up to 13% energy reduction
 Works with today's DRAMs
 Adopted by ARM

Bank-Wise Staggered Power-Down

 Each bank can go into power-down individually

Further improvement:

- -9% energy
- -10% latency

[1] M. Jung, C. Weis, N. Wehn, M. Sadri and L. Benini, "Optimized active and power-down mode refresh control in 3D-DRAMs," 2014 22nd International Conference on Very Large Scale Integration (VLSI-SoC)

Content

- The Transprecision Concept
- **Overview on Memory Types**
- The Importance/Challenges of Memories in Computing
- The DRAM Device
- The Refresh Challenge and Optimizations
- Improvement of Reliability
- Power Down Mode
- **The Memory Controller**

DRAM Memory Controller

Increasing bandwidth demand

DRAM controllers must provide higher bandwidth and **lower latency**

DRAM Latency Variation

Chstone ADPCM / DDR3 / BRC / FCFS

ECTRONIC

RESEARCH GROUP

Chstone ADPCM / DDR3 / RBC /

- DRAM latency varies largely
- Depending on
 - Application
 - Address
 - Mapping
 - DRAM
 - Memory
 Controller

Row miss: introduces latency (ACT/tRCD, PRE/tRP) and additional energy

The Memory Controller

Multichannel Memory Controller

OFI FCTRONI

SEARCH GROUP

- Arbitration & Mapping: maps transactions to channels, maps addresses to bank/row/column
- Scheduling: minimizes latency e.g. First-Ready-First-Come -Served, open page policy, closed page policy, adaptive page policy
- DRAM Command Control: generates the DRAM commands
- Controller manages power down modi and refresh

Application Aware Address Mapping

NICROELECTRONIC YSTEMS DESIGN ESEARCH GROUP

Optimum Address mapping: ILP

∀*i* =1,...,n

 $\forall t = 1,...,T$ $\forall b = 1,...,B$

∀*t* =1,...,T

∀*r* =1,...,R

∀*b* =1,...,B

 $\forall r = 1,...,R$ $\forall b = 1,...,B$ Minimize number of row misses for all banks over the access trace

 $x_{rb} = 1$ iff address i is in row r and bank b (each address i is assigned to exactly one row and one bank)

 $\forall r = 1, ..., R$ Every row r in bank b has at most C $\forall b = 1, ..., B$ addresses assigned to columns

 $s_{rb}(t) = 1$ iff row r in bank b is opened at time t (only one row per bank can be active)

The row r in bank b must be open at time t if it is accessed at time t

 $y_b(t) \ge |s_{rb}(t+1) - s_{rb}(t)| \underset{\forall t = 1, \dots, \mathsf{R}}{\forall t = 1, \dots, \mathsf{R}}$

 $s_{rb}(0) = 0$

SEARCH GROUP

min \sum

 $y_b(t)$

 $s.t.\sum \sum x_{rb}(i) = 1$

 $\sum_{i=1}^{n} x_{rb}(i) \le C$

 $\sum s_{rb}(t) \le 1$

 $s_{rb}(t) \ge x_{rb}(f(t))$

1: if row miss, 0: if row hit

All rows are closed at the beginning

We have shown if B=1 eq. Min-k-Cut \Rightarrow **NP-Hard Problem**

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

Architectural Template

- In general: 2³²! factorial mappings
- Consider only 1 to 1 mapping of logical to physical address bits: 32! factorials
 Use configurable hardware template composed of multiplexers
- Find exact solution with minimal row misses under this HW constraints

27 Bit Output

Example City Onlicign

Using Xilinx MIG Controller

Industrial holographic 3D image processing application (10 MIG Controller)

Only 9 LUTs necessary

Integration of Memory Controllers (1) OFI ECTRONIC SYSTEMS DESIGN ESEARCH GROUP Memory Controller + PHY in RISC-V based SoC in a 65nm UMC technology Parallel Ultra Low Power FLL (f~400MHz) e.g.: 1/4 1/4 single Device 4Gb x8 DDR3 DDR3 DDR3 DDR3/LP RISC-V CORE) AXI4 Memory DRAM DRAM Controller x8 PHY JTAG ASIC

65nm UMC

64bit data per request!

Embedding DDR3 Controller (AXI4) and PHY

Integration of Memory Controllers (2)

OFI ECTRONIC

SYSTEMS DESIGN RESEARCH GROUP

DDR3/4 DRAM controller for **kW** Platforms (XILINX FPGA)

→ Controller will support DDR4/DDR3 DRAMs and KUS + KUS+ FPGAs

Features of the DDR Controller and PHY

1:4 clocking scheme

ESEARCH GROUP

- Smart MUXes, slot based entries
- Low latency (3 clks) read request
- Per Bank architecture (bank machines)
- Optimized buffer depth
- Low complexity and flexible architecture
- Out-of-order scheduling for ACT and PRE commands, FCFS-FR
- Strict-order of CAS (R/W) commands
- Configuration via REG-Bus interface provided by ETH
- Unique feature: support of application knowledge by optimized mapping of logical to physical addresses (ASAM)

- Extra Address Watermark + Row Granular Refresh in Bank Machine FSM (Approximate DRAM)
- Extra Timer for Optimized Row Granular Refresh (ORGR)
- Application specific address decoder (ASAM) replaces traditional address decoder
- =>Optimal BW without Complex Schedulers, uses First Come First Serve
- Lean, Low Power, Low Latency

Floorplan/Area x8 Memory Channel

DDR3 PHY Features:

SEARCH GROUP

- Designed for 1066 Mbit/s/pin (f=533MHz)
 - limited by the package (QFN-64) to 400MHz
- Independent calibration of the delays (DQ data, DQS strobe)
 - 5ps resolution
- □ All-digital delay locked loop (DLL)
 - separate placed and routed as macro block
- Off-chip calibration for match impedance drivers (off-chip driver OCD)
 - 7 slices based design ... 240 34 Ω
- Local BIAS of Receiver circuits
 - no analog lines to be routed
 - independent placement of the PADs

Mix-signal design in the DDR3 PHY

All-digital delay locked loop (DLL)

MICROELECTRONIC SYSTEMS DESIGN RESEARCH GROUP

□ Final DDR3 transceiver design (OCD + receiver)

Impedance calibration for the drivers (ocdcal)

Summary

- Transprecision computing targets minimum energy consumption per operation taking application into account
- Memories play an important role in computing systems (performance, energy)
- There are many optimizations to improve memory energy efficiency
- Optimized refresh strategies (ORGR, bank-wise)
- Use concept of approximate DRAM
- Optimize access schemes (memory controller)
- Use sophisticated power down modes
- Use 3D integration
- Use new memory/heterogeneous memory types

Thanks for your attention

Further information on http://ems.eit.uni-kl.de http://oprecomp.eu/

This project is co-funded by the European Union's H2020-EU.1.2.2. - FET Proactive research and innovation programme under grant agreement #732631.