

Energy-Efficient Heterogeneous Design

Perugia

Luca Benini^{1,2}

04.09.2019

¹Department of Electrical, Electronic and Information Engineering

European Commission Horizon 2020 European Union funding for Research & Innovation

$Cloud \rightarrow Edge \rightarrow Extreme Edge$

| 2

Energy efficiency is THE Challenge

Cool... But, HOW??

4

2013: Parallel Ultra Low Power \rightarrow PULP!

Near-Threshold Computing (NTC):

- **1.** Don't waste energy pushing devices in strong inversion
- 2. Recover performance with parallel execution
- **3.** Manage Leakage, PVT variability and SRAM limitations NT!!!

Near-Threshold Multiprocessing

Need Strong ISA, Need full access to "deep" core interfaces, need to tune pipeline! OPEN ISA: RISC-V RV32IMC + New, Open Microarchitecture \rightarrow RI5CY!

D. Rossi *et al.*, "Energy-Efficient Near-Threshold Parallel Computing: The PULPv2 Cluster," in *IEEE Micro*, Sep./Oct. 2017.

Bespoke ISA needed! Enter Xpulp extensions

<32-bit precision \rightarrow SIMD2/4 \rightarrow x2,4 efficiency & memory size

Risc-V ISA is extensible *by construction* (great!)

- V1 Baseline RISC-V RV32IMC HW loops
- V2 Post modified Load/Store Mac
- V3 SIMD 2/4 + DotProduct + Shuffling Bit manipulation unit Lightweight fixed point (EML centric)

7

25KG → 40KG (1.6x)

M. Gautschi et al., "Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint Devices," in IEEE TVLSI, Oct. 2017.

RI5CY – are xPULP ISA Extensions (1.6x) worthwhile?

Results: RV32IMCXpulp vs RV32IMC

PULP-NN: an open Source library for DNN inference on PULP cores

The Evolution of the 'Species'

Enter Zero/Micro-riscy, small core for control

- Only 2-stage pipeline, simplified register file
- Zero-Riscy (RV32-ICM), 19kGE, 2.44 Coremark/MHz
- Micro-Riscy (RV32-EC), 12kGE, 0.91 Coremark/MHz
- Used as SoC level controller in newer PULP systems

Different cores for different types of workload

The IoT Processor: Mr Wolf

Mr. Wolf Chip Results: Heterogeneous Computing Works

Technology	CMOS 40nm LP
Chip area	10 mm ²
VDD range	0.8V - 1.1V
Memory Transistors	576 Kbytes
Logic Transistors	1.8 Mgates
Frequency Range	32 kHz – 450 MHz
Power Range	72 μW – 153 mW

Power Managent (DC/DC + LDO)	VDD [V]	Freq.	Power
Deep Sleep	0.8	n.a.	72 µW
Ret. Deep Sleep	0.8	n.a	76.5 - 108 mW
SoC Active	0.8 - 1.1	32 kH 450 N	0.97 - 38 mW
Cluster Active	0.8 - 1.1	32 kH 7 350 N	1.6 - 153 mW

A. Pullini, D. Rossi, I. Loi, A. Di Mauro, L. Benini, "Mr.Wolf: a 1 GFLOP/S Energy-Proportional Parallel Ultra Low Power SoC for IoT Edge Processing", ESSCIRC 2018.

More efficiency: Heterogeneous PULP Cluster

-15

HW Convolution Engine

F. Conti and L. Benini, "A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters," *Design, Automation & Test in Europe Conference & Exhibition (DATE)*, 2015, pp. 683-688.

HWCE Sum-of-Products

Heterogeneous PULP CNN Performance

Now coming: HWCE 2.0 – improves scalability & flexibility @ 3TOPS/W

PULP cluster+MCU+HWCE(V1) → GWT's GAP8 (55 TSMC)

Two independent clock and voltage domains, from 0-133MHz/1V up to 0-250MHz/1.2V

What	Freq MHz	Exec Time ms	Cycles	Power mW	
40nm Dual Issue MCU	216	99.1	21 400 000	⁶⁰	16
GAP8 @1.0V	15.4	99.1 11 X	1 500 000	3.7	GREENWAVES
GAP8 @1.2V	175	8.7 🔸	1 500 000	70	a and a set of the
GAP8 @1.0V w HWCE	4.7	99.1	460 000	0.8	

4x More efficiency at less than 10% area cost

| 19

New Application Frontiers: DroNET on NanoDrone

Only onboard computation for autonomous flight + obstacle avoidance no human operator, no ad-hoc external signals, and no remote base-station!

More Efficiency (2): Extreme Quantization

Model	Bit-width	Top-1 error	SOA INQ retraining
ResNet-18 ref	32	31.73%	
INQ	5	31.02%	
INQ	4	31.11%	
INQ	3	31.92%	
INQ	2 (ternary)	33.98%	2.2% loss \rightarrow 0% with 20

Low(er) precision: $8 \rightarrow 4 \rightarrow 2$

1 MAC Op = 2 Op (1 Op for the "sign-reverse", 1 Op for the add).

21

From +/-1 Binarization to XNORs

$$y(k_{out}) = \text{binarize}_{\pm 1} \left(\mathbf{b}_{k_{out}} + \sum_{k_{in}} \left(\mathbf{W}(k_{out}, k_{in}) \otimes \mathbf{x}(k_{in}) \right) \right)$$

$$\text{binarize}_{\pm 1}(t) = \text{sign} \left(\gamma \frac{t - \mu}{\sigma} + \beta \right)$$

$$\text{binarize}_{0,1}(t) = \begin{cases} 1 \text{ if } t \ge -\kappa/\lambda \doteq \tau, \text{ else } 0 \quad (\text{when } \lambda > 0) \\ 1 \text{ if } t \le -\kappa/\lambda \doteq \tau, \text{ else } 0 \quad (\text{when } \lambda < 0) \end{cases}$$

$$\mathbf{y}(k_{out}) = \text{binarize}_{0,1} \left(\sum_{k_{in}} \left(\mathbf{W}(k_{out}, k_{in}) \otimes \mathbf{x}(k_{in}) \right) \right)$$

Thresholding
Multi-bit accumulation

| 22

XNE: XNOR Neural Engine

Main unit: binary dot-product and thresholding

Quentin: a XNE-accelerated microcontroller

Quentin in GlobalFoundries 22FDX

F. Conti, P. D. Schiavone and L. Benini, "XNOR Neural Engine: A Hardware Accelerator IP for 21.6-fJ/op Binary Neural Network Inference," in *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 37, no. 11, pp. 2940-2951, Nov. 2018.

XNE Energy Efficiency

Accuracy Loss is high even with retraining (10%+) → mixed precision TWN & TCN are also a very appealing alternative (under design)

25

Not Only CNNs: Hyper-Dimensional Computing

More efficiency (3): HD-Based smart Wake-Up Module

Taped out in 22fdx

More Efficiency (4): Focal Plane Processing

Enable the extraction of low-level features in a parallel and efficient way by **integrating pixel-wise mixed-signal processing circuits** on the sensor die **to reduce the imager energy costs**.

Fernández-Berni, Jorge, et al. "Image Feature Extraction Acceleration." Image Feature Detectors and Descriptors. Springer International Publishing, 2016. 109-132.

Ultra-Low Power Imaging (GrainCam)

This process naturally reflects the operation of a binarized pixel-wise convolution and can be seen as embedding the first convolutional layer within the image sensor die

M. Gottardi et al, "A 100uw 12864 pixels contrast-based asynchronous binary vision sensor for sensor networks applications," IEEE JSSC, 2009.

Combinational "Fully Spatial" BNN

Synthesis Results

Synthesis of both models with hard-wired or reconfigurable weights

GF 22nm SOI with LVT cells (typical corner case 0.65V, 25°C)

	Synt	HESIS	AND POV	VER RESU	TABLE	II R DIFFERE	NT CON	FIGURA	TIONS
	netw.	type	a $[mm^2]$	area —— [MGE] [†]	— tir [ns]	ne/img — [FO4] [‡]	E/img [nJ]	leak. [µW]	E-eff. [TOp/J]
	16×16 16×16 32×32 32×32	var. fixed var. fixed	1.17 0.46 5.80 2.61	5.87 2.32 29.14 13.13	12.82 12.40 17.27 21.02	560 541 754 918	2.40 1.68 11.14 11.67	945 331 4810 1830	470.8 672.6 479.4 457.6
\backslash	† Two- ‡ Fano	input I ut-4 de	NAND-ga elay: 1 F0	te size eq $04 = 22.8$	uivalent 89 ps	$: 1 \mathrm{GE} =$	0.199μ	m^2	

Hundreds of TOPS/W!

Massive area reduction when hard-wiring the weights:

- XNOR operations reduce to wires or inverter, which can be also shared among different receptive fields
- · popcounts also exploits sharing mechanisms

Advanced Synthesis Tools become central to exploit weights and intermediate results sharing to reduce the area occupation

M Rusci, L Cavigelli, L Benini "Design automation for binarized neural networks: A quantum leap Opportunity?" 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 1-5

What about Security? A Secure EE AI Processor

[3] F. Conti et al., An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics, IEEE TCAS-I 2017

Data security: HWCrypt – a Cryptographic Accelerator

[1] T. Unterluggauer et al., Leakage Bounds for Gaussian Side Channels, CARDIS 2017

HWCrypt is a «collection» of two crypto engines plugged to the shared memory and controlled via the periph interconnect

- AES Engine
 - AES-128-ECB: fast but not secure (plaintext patterns are ~visible in ciphertext)– for comparison!
 - AES-128-XTS: each block encrypted with a different tweak – just as fast in the HWCrypt
 - individual execution of cipher rounds (to speed up new SW-based AESbased algorithms)
- Sponge Engine
 - two instances of Keccak-f[400]
 - leakage-resilient encryption scheme [1]
 - similar performance to AES engine

Fulmine SoC

Fulmine: Hardware Convolutional Engine (HWCE) in the Cluster

F. Conti et al., "An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics,",in IEEE TCAS-I Sept. 2017.

Secured ResNet-18: execution time & energy

- DPA-secure encryption of all communication: weights + intermediate CNN results
- Up to 70x speedup w.r.t. microcontroller, 15x w.r.t. to pure SW
- 20x improvement in energy (diminishing return region: this is "good enough")
- Performance up to 3s / frame ; 50 mJ / frame

Reconfigurable Heterogeneity: Arnold

- RI5CY RISC-V 32b CORE RV32IMFC + pulp extensions 3,19 CoreMark/MHz Memory protection
- Autonomous I/O Subsystem
- 512 kB of Memory

 4 Interleaved BANKS of 112 kB
 7 cuts of 4096x32 SRAM
 1 BANK of 32 kB
 2 cuts of 4096x32 SRAM
 1 BANK of 32 kB
 2 cuts of 4096x32 SRAM
- 8 kB ROM
- **3 FLLs** Core, Peripherals and FPGA
- embedded FPGA

32x32 array 32x32x4x 4in-LUT = 4096 4inLUT 1024 registers 6 clocks

Arnold: MCU+ Embedded FPGA

Arnold Physical View

Many applications need 64-bit "numbers"

• For the first 4 years of the PULP project we used only 32bit cores

- Most IoT applications work well with 32bit cores.
- A typical 64bit core is much more than 2x the size of a 32bit core.

But times change:

- Large datasets, high-precision numerical calculations (e.g. double precision FP) at the IoT edge and cloud
- Lot of interest in the security community for working on a contemporary open source 64bit core.
- High performance computing (FP intensive) is becoming again a hot area for Architecture and Digital design research

ARIANE: >1GHz, Linux Capable 64-bit core

Main properties of Ariane

- Tuned for high frequency, 6 stage pipeline, integrated cache
 - In order issue, out-of-order write-back, in-order-commit
 - Supports privilege spec 1.11, M, S and U modes
 - Hardware Page Table Walker
- Implemented in GF 22FDX (Poseidon, Kosmodrom, Baikonur), and UMC65 (Scarabaeus)
 - In 22nm: ~1 GHz worst case conditions (SSG, 125/-40C, 0.72V), 1.7GHz typ @0.8V
 - 8-way 32kByte Data cache and 4-way 32kByte Instruction Cache
 - Core area: 175 kGE
- Application-class features are not cheap
 - 38% area in TLB, PTW
 - **51.8**pJ/op vs. 10pJ/OP in 22FDX @ 0.8V
 - IPC 0.85 vs. 0.94, 1.7GHz vs. 690, just 2.1 faster!

Extreme FP Performance: The "V" Extension

Extreme FP Performance: The "V" Extension

Implementation results in a 0.75mm x 1.25mm GF22 macro

- Post-synthesis PPA results
- WC operating frequency similar to Ariane
- Area: 3188 kGE
 - Each lane amounts to 533 kGE
 - Ariane (wo. \$s) amounts to 474 kGE
- For a 256×256 integer MATMUL
 - Performance: 10.2 DP-GFLOPS
 - Power consumption: 192 mW
 - Energy efficiency: 53 DP-GFLOPS/W
- 3.1x GOPS/W wrt Ariane, at same frequency

Up to 98% utilization @ *n* × *n* DP-MATMUL (always?)

Matheus Cavalcante | 05.09.2019 | 44

Floating-Point \rightarrow Transprecision FP

- Provide easy precision tuning
 - = 64(DFP), 32(FP), 16(HFP), 16ALT, 8
- Mainly consists of four operation groups
 - MUL/ADD: Add/Subtract, Multiply, FMA
 - CMP/SGNJ: Comparisons, Min/Max etc.
 - CAST: FP-FP casts, Int-FP / FP-Int casts

Parametrizable

- Number & Encoding of Formats (any Exp/Man bits)
- Packed-SIMD Vectors
- # Pipeline Stages (per Op and Format)
- Implementation (per Op and Format)
 - PARALLEL for best Speed
 - MERGED (or Iterative) for best Area
- Special Functions for Transprecision
 - Cast-and-Pack 2 FP Values to Vector
 - Casts amongst FP Vectors + Repacking
 - Expanding FMA (e.g. FP32 += FP16*FP16)

Stefan Mach | 05.09.2019 | 45

Result Highlights

- While TP FPU adds 9% of Ariane core area vs RV64D, ...
- Super-Linear energy savings thanks to aggressive clock-gating
 - Mutually exclusive data paths rather than sharing

- ~pJ/FLOP @1GHz in 22FDX
 - 0.4pJ FP8, 0.9pJ FP16, 2.4pJ FP32, 6.2pj FP64
- Transprecision applications will profit from this additional HW
- Fully integrated into RISC-V ISA through custom extension
 - Easy to leverage thanks to our GCC extensions, part of PULP SDK

Heterogeneous RISC-V platform from ULP to HPC

OpenPiton: cache-coherent many-core system

OpenPiton

- Developed by Princeton
- Originally OpenSPARC T1
- Scalable NoC with coherent LLC
- Tiled Architecture

Status

- Bare-metal Dec '18
- Update with support for SMP
 Linux just released
- Multiple different cores and ISAs (x86, SPARC, RISC-V)

ISA heterogeneity with a cachecoherent memory hierarchy

Hero: Fat (multi) core host, slim manycore accelerator

- First released in 2018
- Many-core PULP clusters connected with a general-purpose fat-core host with heterogeneous ISA – shared virtual memory (non coherent)

HERO v3: Heterogeneous 64-32b RISC-V

The best of both worlds?

Leading innovation with:

- lightweight shared virtual memory (SVM)
- distributed atomic transactions
- heterogeneous 64/32-bit LLVM toolchain
- support for predictable execution (PREM)

DDR DRAM

off-chip DRAM

HERO v3 First Silicon: Urania

- first HERO ASIC first fully-open source linux Booting risc-V SoC in the world
- 2 PULP clusters, each with
 - 4 RV32 RI5CY cores
 - 4 transprecision FPUs
 - I PULPO accelerator
 - 64 KiB TCDM in 8 banks
- Ariane RV64 host processor
- 128 KiB Shared LLC
- software-managed IOMMU
- DDR3 DRAM Controller + PHY

UMC 65nm LL

16 mm² die area, ca. 9 mm² logic core area

ca. 6 MGE logic core complexity, ca. 400 KiB SRAMs in total

What's next?

@pulp_platform http://pulp-platform.org

Heterogeneous computing toward post-exascale

- Peak compute (GPU) 15TFLOP/s at 300W
 - 20x Better needed for post exascale: 1TWFLOP/W
- Only 5% power estimated to be spent in the FPUs [1]:
 - [1] reports 2.9%, but their kernels don't reach TDP/max perf.
 - In dubio pro Invidia: We scale power to assume modern GPUs do not exceed TDP at max perf. (making them more efficient)
 - Key issue: GPU RF is SRAM: FMUL32 4pJ, SRAM 20pJ

	Shared
	Memory
	Const_SM
	Const Cache
	Texture Cache
	FDS
	ALU
	INT INT
	SFU
+•••	REG
orn NG	FP
~ ~	Idlepower
	on Alo

210

Graph extracted	and	cropped	from	[1].
-----------------	-----	---------	------	------

64 FPUs		
<mark>256 kB RF</mark> 128 kB L0 Cache	Volta Assembly LDS R2, [R0] LDS R3, [R1]	
32-2048 threads	FFMA R4, R2, R3,	R2

2 mem. acc. ("[...]") 8 reg. acc. Into RF SRAM = 10 SRAM R/W total

[1] S. Hong and H. Kim, "An integrated gpu power and performance model," in ACM SIGARCH Computer Architecture News, 2010.

53

Network Training Accelerator (NTX)

Again: specialized "deep interfaces" + Instruction extensions

NTX Power Breakdown & GPU SM Comparison

- NTX dissipates significant fraction of power in its FPU (more is better):
 - 31% of cluster
 - 14% of entire if we account for Main Mem
 - Recall: GPU is just around 5% [1]

- Compared to NVIDIA Volta GPU [2]:
 - Register file in GPU holds registers and thread-local data
 - Each register read/write is an SRAM access
 - Register and data accesses compete for SRAM

Volta SM	8 NTX cl	Volta Assemb
4 FPUs	64 FPUs	LDS R2, [R0 LDS R3, [R1
256 kB RF	512 kB TCDM	FFMA R4, R2
28 KB LU ache		2 mem. acc. ("[…]" 8 reg. acc.
2-2048 threads	8 threads	

Volta Assembly	NTX Pseudocode
LDS R2, [R0] LDS R3, [R1] FFMA R4, R2, R3, R2	FMAC accu, [AGU0], [AGU1]
2 mem. acc. ("[…]") 8 reg. acc.	2 mem. acc. ("[…]") 0 reg. acc. (+ addr. calc for free)
= 10 SRAM hits total	= 2 SRAM hits total

NTX Roofline and efficiency

Performance [Gflop/s]

- NTX achieves high utilization of available bandwidth and compute
- We investigate a range of different kernels:
- Linear Algebra
 - Mat-Mat product (GEMM)
 - Mat-Vec product (GEMV)
 - Vector sum (AXPY)
- Stencils
 - Discrete Laplace Operator in 1D/2D/3D
 - Diffusion
- **Deep Learning**
- 2 to 3x more efficient than GPGPU

Technology to the rescue

Reduce pJ/B to access main mem

What about the ~30% of power that goes in the memory interface?

Intel's upcoming 3D-stacked processor, codename Lakefield

Reduce the number of accesses...

Industrial open SW Hardware

IowRISC Community Interest Company

enabling open source silicon through collaborative engineering

LowRISC is up and... hiring

Alex Bradbury, Dr Gavin Ferris, Dr Robert Mullins Prof. Luca Benini, Ron Minnich, Dominic Rizzo

59

Will one NFP Company be Enough?

60

OpenHW Group Charter

OpenHW Group is a not-for-profit, global organization driven by its members and individual contributors where hardware and software designers collaborate in the development of open-source cores, related IP, tools and software such as the **CORE-V Family of cores**. OpenHW provides an infrastructure for hosting high quality open-source HW developments in line with industry best practices.

R. O'Connor (OpenHW CEO, former RISC-V foundation director)

www.pulp-platform.org

The fun is just beginning...

Questions?

@pulp_platform http://pulp-platform.org