MANCHESTER

1824

Energy Efficient Inter-Chip Communication
in Heterogeneous Application Domains

Vasilis F. Pavlidis
Advanced Processor Technologies group
University of Manchester
pavlidis@cs.man.ac.uk
http://www.cs.man.ac.uk/~pavlidiv/



MANCHESTER

ity
er

he Universi
of Manchest

Why Communication Matters?
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Energy Cost of Data Processing and Transfer
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P. Kogge and J. Shalf, “Exascale Computing Trends: Adjusting to the “New Normal” for Computer
Architecture,” Computing in Science & Engineering, Vol. 15, No. 6, pp. 16-26, Nov/Dec 2013.
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Communication in Ubiquitous Computing
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= 20 pJ/Operation |
= ADD Op. of two 64-bit operands » " Total budget: 0.31 pJ/bit
= 30% energy for communication = Communication: 0.1 pJ/bit

1)S. Borkar, “Role of Interconnects in the Future of Computing,” IEEE Journal of Lightwave Technology, Vol. 31, No. 24, pp. 3927 —
3933, Dec. 2013.
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*D. Dutoit, “3D System Design: opportunities, challenges, enabling solutions and methodologies,” Proceedings of the 3D IC Conference, t
December 2014.
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Part | - Outline

= Single-Ended Chip-to-Chip Communication
= Low-Swing Signaling for Energy Efficiency
= Data Encoding for Energy Efficiency

= Summary
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Serial or Parallel Communication
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*T. M. Hollis et al., “Recent Evolution in the DRAM Interface,” IEEE Solid State Circuits Magazine, Vol. 11, No. 2, pp. 14-30, Spring 2019. 8
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Modern Packaging Solutions
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*B. Dehlaghi, N. Wary, and T. C. Carusone, “Ultra-Short Reach Interconnects for Die-to-Die Links,” IEEE Solid State Circuits 9

Magazine, Vol. 11, No. 2, pp. 42-53, Spring 2019.
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Differential or Single-Ended Signaling
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*B. Dehlaghi, N. Wary, and T. C. Carusone, “Ultra-Short Reach Interconnects for Die-to-Die Links,” IEEE Solid State Circuits 10

Magazine, Vol. 11, No. 2, pp. 42-53, Spring 2019.
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Commercial 2.5-D/3-D Integrated Systems

= Micron HMC (hybrid memory cube)

e 15x bandwidth of DDR3
e 70% less energy per bit
e Lower latency
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11
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Part | - Outline

= Single-Ended Chip-to-Chip Communication
= Low-Swing Signaling for Energy Efficiency
= Data Encoding for Energy Efficiency

= Summary

12



MANCHll;I; I‘ER

Part | - Outline

= Single-Ended Chip-to-Chip Communication

= Low-Swing Signaling for Energy Efficiency
e Low-Swing Transceiver Design

e Simulation Results
= Data Encoding for Energy Efficiency

= Summary
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Chip-to-Chip Communication Link in ExaNoDe
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CORE SUPPLY DOMAIN (0.9V) : CORE SUPPLY DOMAIN (0.9V)

N e e BeNEsEse N NENESEReNEeE s NANESEBeRESE e EsEsaRERESeREnEsennnunD INTERPOSER

Exalet passive link for Chiplet
to Chiplet.commuynication
1}

Physical view of the interposer with the projected location of the transceiver and the passive link

14
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Low Swing Signaling Scheme
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15
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State-of-the-Art Low Swing Transmitters
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¢ One voltage domain

¢ Adjustable output swing
1)), C. Garcia Montesdeoca, “CMOS Driver-Receiver Pair for Low-Swing Signalling for Low- ®  Requires bus weak keepers
Energy On-Chip Interconnects,” IEEE Transactions on VLSI Systems, Vol. 17, No. 2. Feb 2009 ®  Sensitive to parameter variability

2) M. S. Lin, et al., “An extra low-power 1Tbit/s bandwidth PLL/DLL-less eDRAM PHY using 0.3V
low-swing 10 for 2.5D CoWoS application,” IEEE Symposium on VLS| Technology, Jun. 2013
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Vbus

L=1lmm to 10mm
W=0.23microns
MUl CL=0.25pF to 2.5pF

Vbus
1

State-of-the-Art Low Swing Receivers
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1)J. C. Garcia Montesdeoca, “CMOS Driver-Receiver Pair for Low-Swing Signalling for Low-Energy On-
Chip Interconnects,” IEEE Transactions on VLSI Systems, Vol. 17, No. 2. Feb 2009
2)Y. Liu, et al., “A Compact Low Power 3D I/0 in 45nm CMOS,” ISSCC 2012

3)K. J. Lee, et al., “Low-Swing Sighaling on Monolithically Integrated Global Graphene Interconnects,”
IEEE Transactions on Electron Devices, Vol. 57, No.12, Dec. 2010
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Variability Compensation in Transmitter Circuit

CHIP B
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Variability compensation in Receiver Circuit
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*P. Mroszczyk and V. F. Pavlidis, “Mismatch Compensation Technique for Inverter-Based CMOS Circuits,” Proceedings of the
IEEE International Symposium on Circuits and Systems, May 2018. 20
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Transceiver Trimming
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= Single-Ended Chip-to-Chip Communication

= Low-Swing Signaling for Energy Efficiency
e Low-Swing Transceiver Design

e Simulation Results
= Data Encoding for Energy Efficiency

= Summary
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Experimental Set-up
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Transceiver Trimming

= TX transmission window trimming
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Comparison to Full Swing Transceiver

PARAMETER FULL SWING LOW SWING RATIO (FS/LS)
ENERGY : .

LATENCY

(TX+RX)

EDP . .

SUPPLY CURRENT (FS) ~ ] SUPPLY CURRENT (LS)
DC = 1.78 mA DC = 0.57 mA
RMS = 2.76 mA RMS = 0.80 mA

FULL SWING (1.2V) CHANNEL OUTPUT

oo

1.0 L . . 25. 50.0 F o B 25.0 50.0 75.0 100
time (ns) time (ns) time (ns)

*P. Mroszczyk and V. F. Pavlidis, “Ultra-Low Swing CMOS Transceiver for 2.5-D Integrated Systems,” Proceedings of the IEEE 26
International Symposium on Quality Electronic Design, pp. 262-267, March 2018.
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Low Swing Buffer FE — . Low Swing Receiver FE
20 pm x 20 pm 5 ( i 20 um x 20 pm
Transmitter TX 1 L Receiver RX

..............................................................................................

o g o : RX controller and front-end interface

TX controller and front-end interface 120 pm x 80 um

90 um x 60 um Physical view of the interposer with the
transceiver and the 1.3 mm long passive link

= Exascale Manchester Interconnect (EMI) v1.0
* Energy: 44.5 fl/bit, Speed: 2 Gb/s/wire (SDR), bandwidth: 256 Gb/s (128-wire link), 5 Tb/s/mm?2
e Advanced body biasing scheme for parameter variability trimming
* Up to 3x less power consumption compared to a standard full swing solution (< 0.1 pJ/bit)
e Over 5x less switching noise compared to a standard full swing solution

e Latency: 2 clock cycles from TX to RX (0.41 ns for level conversion and signal propagation) 27
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Energy versus Speed Comparison
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Energy versus Area Comparison
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= Single-Ended Chip-to-Chip Communication
= Low-Swing Signaling for Energy Efficiency
= Data Encoding for Energy Efficiency

= Summary
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Part | — Outline

= Single-Ended Chip-to-Chip Communication
= Low-Swing Signaling for Energy Efficiency

= Data Encoding for Energy Efficiency

e Data Encoding Approaches
e Adaptive Word Reordering

e Simulation Results

= Summary
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Static Encoding Schemes

= A-priori knowledge of data statistics

e Gray code

- Single transition in case of sequential data words

Cc Cc

Cg

e TOcode €

- Prevents transitions in case of sequential data words

Cg C

e Beach Solution

- Application oriented, prior analysis of data stream is required

e Working Zone

- Assumes that only a subgroup of the address space is used

e Probability based Mapping
- Frequent words are mapped to words with low Hamming weight

e Partial Bus Invert (PBI)

- Subgroup of lines is formed according to transition probabilities of busé2
lines
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Adaptive Encoding Schemes

= NO prior knowledge of data statistics

Bus Invert (BI)

- Word is inverted when more than half bits would switch

Adaptive Partial Bus Invert (APBI)

- A subgroup of bus lines is inverted, which is changed periodically

Frequent Value

- Encodes the frequent words which are stored in memory

Adaptive Dictionary Encoding

- Number of bits is reduced using a dictionary to store recurring patterns

Adaptive Bus Encoding (ABE)

- Highly correlated lines are encoded

Coupling-based schemes

33



Bus Invert (BI)

= Calculate number of transitions

= |nvert the data word if more than half of the bus lines
switch
= 1 extra bus line , 1 ) A D>
g 1 - I >
? Do+ D
0000 0000 O T _{>
1011 0100 1
0110 01100 Gﬁ <3
1001 0110 1 N —C <G
1110 11100 R S — 4 f
1100 11000 P
V ®
<] it
N

ENC_OUT

[1] M. R. Stan and W. P. Burleson, “Bus-Invert Coding for Low-Power I/O,” IEEE Trans. on VLS| Systems, Vol. 3, 34
No. 1, pp. 49-58, March 1995.
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Bus Invert for Power Supply Noise Reduction

s VDD Scaling Down Gres
14
- 0.02
st S
é 1 0.015 §
S L Power Noise Going Up <
> 06 001 &
g > :
@ 04 SUpply VOAge mm 0.005 -
0.2 Power NOISe
0 0
S g & & &
Q° "9 "9 Q Q rp r& rp 0
& N\ \
R o O \"‘
S P P
Year (Technology Node)

35
*A. Sarkar, “Challenges in IC and electronic systems verification,” Semiconductor Engineering, May 9, 2013.
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Bus Invert for DRAM Memory Bus

POD_L Terminati vepa 120
Memory Controller =T EIRnEton : ) .
e Breakout  Main  Breakout B Without DBI ] With DBI
> o (D v (H{2}e gis
Via - ) ~ Via
— 5
€ 80
Memory Controller SSTL Termination - g
PKG Length Breakout _Main  Breakout ~ DRAM | E o
PO H—o—{ o (H v (H{jo
S 1B
~ 40
vDDQ2 £
Memory Controller VSS Termination =
PKG Length Breakout Main  Breakout | DRAM 20
(P oo (H{ b {2}
Via : Via 0
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VSS
36

*H. Y. To, “An Analysis of Date Bus Inversion,” IEEE Solid State Circuits Magazine, Vol. 11, No. 2, pp. 31-41, Spring 2019.
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Adaptive Partial Bus Invert (APBI)

m Observe the data stream over a window of N words
= Select the bus lines with the highest probability of

switching

=  Apply bus inversion to these lines

ENC_IN© *

Bus Lines
Selection

}

[2] C. Kretzschmar, R. Siegmund, and D. Mueller. Adaptive Bus Encoding Technique for Switching Activity
Reduced Data Transfer over Wide System Buses. In Workshop on PATMOQOS, pp. 66-75, Sep. 2000.

Bus Invert

INV

APBI Encoder

ENC_OUT

37
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Adaptive Bus Encoding (ABE)

m Observe the data stream over a window of N words

= Select a bus line as basis and form a cluster of the
highly correlated lines

= XOR all the clustered lines with the basis line
LO I'1 Lz I-3 vee LM
0 0 1 1 0
: . ! 0 0 M Basis Line
0 0 1 1 0
0 1 1 0 0 B Clustered Lines
0 1 0 1 1

[3] S. Sarkar et al., “Adaptive Bus Encoding for Transition Reduction on Off-Chip Buses With Dynamically Varying 38
Switching Characteristics,” IEEE Trans. on VLS| Systems, Vol. 25, No. 11, pp. 3057-3066, Nov. 2017.
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Adaptive Bus Encoding (ABE)

m Observe the data stream over a window of N words

= Select a bus line as basis and form a cluster of the
highly correlated lines

= XOR all the clustered lines with the basis line
Lo L, L, L, Ly, L.
0 0 1 1 0 1
k ! ! 1 0 0 M Basis Line
0 0 1 1 0 0
1 1 1 1 0 . B Clustered Lines
B Redundant
1 1 0 0 1 0
0 1 0 0 0 0

[3] S. Sarkar et al., “Adaptive Bus Encoding for Transition Reduction on Off-Chip Buses With Dynamically Varying 39
Switching Characteristics,” IEEE Trans. on VLS| Systems, Vol. 25, No. 11, pp. 3057-3066, Nov. 2017.
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Limitations of Encoding Schemes

= Static

e Knowledge of data statistical properties is not always
feasible

e Statistical properties can temporally vary
= Adaptive
e High power overhead of encoder and decoder

e Switching reduction of adaptive schemes might not be
adequate

"= Coupling-based
* Unsuitable for inter-chip interconnects, C,>>C,
e High power overhead

40
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= Low-Swing Signaling for Energy Efficiency

= Data Encoding for Energy Efficiency

e Data Encoding Approaches
e Adaptive Word Reordering

e Simulation Results

= Summary
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Adaptive Word Reordering (AWR)

= Coreidea

e Split the data stream to blocks of N words

e Reorder the N words in each block to minimise transitions

10011001
11100111
00010000
00111011
00011011
01101011
10011100
00011001
11011001
01010011
10001101
11011000

—

Transitions = 46

10011001
11100111
00010000
00111011

00011011
01101011
10011100
00011001

11011001
01010011
10001101
11011000

—

11100111
00111011
10011001
00010000

10011100
00011001
00011011
01101011

01010011
11011000
11011001
10001101

30% fewer transitions

—

Transitions = 32

11100111
00111011
10011001
00010000
10011100
00011001
00011011
01101011
01010011
11011000
11011001
10001101

42
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Optimal Reordering

= Word reordering is equivalent to

the Travelling Salesman Problem
(TSP)

= Each word is a node of a fully
connected graph

11100111

= Each weight is the Hamming
distance between the words

= High computational cost

00010000

10011001

43
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Nearest Neighbour

= |n each cycle, out of the N words, select the one with
the lowest Hamming distance from the previous

00010000

11100111

00011011

00111011 10011001

44
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Circuit Implementation

= Challenge: power-efficient calculation of Hamming
distance

+

+

— Delay line p—

45
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Delay Line for Homming Distance Calculation

= |nverter chain with short adjustable delays

" |nverters are connected to ground or Vpp through a
pair of transistors, one is always on

= Higher delay when a transition occurs

T(1) —{ ItL T(M-1) — Fl

G S
) )

- L
T(0) —| I—]_ - T(M-2) —] I—T N

*M. Fujino and V. G. Moshnyaga, “An Efficient Hamming Distance Comparator for Low-Power Applications,” Proc. of the 46
IEEE Int. Conference on Electronics, Circuits and Systems, pp. 641-644, Sept. 2002.
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Encoder Circuit

,,,,,

WORD[0] WORD[I] --. WORD[N
L 1] N RACE STAGE FINISH STAGE WINNER STAGE
WORDI0] Vor
RACE STAGE
; D . WORD[0.N]
LV S |
i ————————— DEL[0] PEI SEL[0]
] DELAY LINE D Q
DEL[0] | DEL[1] ... DELIN] LA
WORD|1] UE —E ENC_OUT
{ ) | 5 E{ i REGO
- . I — : g CLK 1>
FINISH STAGE CLK DEL[1] SEL[1] o
I DELAY LINE D Q @
I LA z
| : WORD[N] - - §
SEL[0] |  SEL[1] .-+ SELIN] I 9 ﬁ_ﬂ% | 2 ]
| E ! @
| B - DELIN] | SEL[N] REG1
DELAY LINE D Q cLE >
W . : | LA g
INNER STAGE
5@ =
)|
1 =
ENC_OUT

= Race stage

e Clock is delayed according to the number of transitions
= Finish stage

e The faster signal prevents the others from propagating

=  Winner stage

e The word that won the race is selected

4

*E. Maragkoudaki, P. Mroszczyk, and V. F. Pavlidis, “Adaptive Word Reordering for Low-Power Inter-Chip Communication,”
Design Automation, and Test Conference in Europe, pp. 974-977, March 2019 .
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Decoder Circuit

= Low spatial redundancy is used to indicate the order
= K = log,N bits are added to the word

= Decoder stores the words to registers in the initial
order

DEC_IN[K-1:0] —— DEC ——— DEC_OUT[N-1:0]
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Part | — Outline

= Single-Ended Chip-to-Chip Communication
= Low-Swing Signaling for Energy Efficiency

= Data Encoding for Energy Efficiency

e Data Encoding Approaches
e Adaptive Word Reordering

e Simulation Results

= Summary
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Simulation Set-up

= 65 nm technology, 400 MHz frequency
" |nterposer-based interconnect
= Wire parameters according to [4]

* |nterconnect model consists of

e Distributed wire model
o CESD - 115 fF
* Lubump — 30 fF

Transmitter Receiver

o—— Encoder *D— Interconnect Model *D\ Decoder

[4] [Online]: Predictive Technology Model (PTM), http://ptm.asu.edu/
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Power Efficiency of AWR

(V)
o

= N = iﬁ words |
=== N = 32 words
== N = 64 words

O
co

o
)

O
H~
T

(B
T

— = DN D
co oo
T \

Power reduction %
D
|

— =
NI
T

—_
o
—

1.5 9 25 3 3F 1 15
Length [mm]

64 bits bus, LFRic benchmark
23% reduction at just 1 mm
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Power Decrease vs Bus Width

23 T T T T T T
98 L /
IS
E 21 /
|2
= 20
L
E 9
1 L
3
=W === M = 32 bits
18 === M = 48 bits
=== M = 64 bits
== M = 128 bits
28 3 Bt 4 4.5

15 2
Length [mm]

N = 32, LFRic benchmark
200 MHz for M = 128 bits
High power gains for all buses
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-AWR32

Power reduction %

—50 =2 AWRg4
mm BI
mm APBI,
—100 :lAPBIlﬁ
== ABE,
—ABE,
_15[] 1 1 - Q % 1 % N &
o~ N ) Q
F N < o@“’ *Q»J’g & Q_@t@’
& &° &
A% A é'?'

= AWR provides the highest power savings

= Up to 23% for multiplexed address-data benchmarks
and 61% for image

= Benefits of data encoding diminish for random data
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Power reduction %

ot
T

Resilience to Process Variations

= [\
(&3} L=
T T

ek
=
T

mm Without Circuit Power
== With Circuit Power

Low drop of power savings due to variations of delays

Size up of devices for the SS corner
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Custom Cell Design

RACE STAGE FINISH STAGE WINNER STAGH
ffe———mmmmmm == I
1 WORDI[0] DD
1
1 /AR R
1 N
1 DEL[0] SEL[0]

-
1| | CLK DELAY LINE
1
| L PR —— A17417% Vi ) I — e
1
1
1
e o
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AWR Test Chip

= TSMC 180 nm

Operating modes

e Store in

Receive Memory

e Encoded
Transmit

e Unencoded

Transmit
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Test Plan

= Use of FPGA to exchange data
= Measure power of encoded and unencoded
transmission
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Part | — Outline

= Single-Ended Chip-to-Chip Communication
= Low-Swing Signaling for Energy Efficiency
= Data Encoding for Energy Efficiency

= Summary
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Part | = Summary

The challenge is to reduce energy below 0.1 pJ/bit across an SoC

Wireline communication offers high efficiency, high speed, reliability, and
security

Looking for improvements on the physical layer (ExaNoDe)
e Low swing signalling
e Hardware trimming and training

Looking for improvements on the data link layer (EuroEXA)
e Reordering encoding
e Error correction

AWR outperforms existing techniques in terms of switching reduction
e Transition reduction without a-priori knowledge of data statistics
e Power efficiency of AWR increases for wider buses
e The right number of reordered words depends on the capacitive load
 Significant power reduction when Vpp 10 > Vpp core
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Part Il — Outline

What is Contactless Communication?

Why Contactless Communication?
Fundamentals of Contactless Communication
Energy-Efficient Design of Contactless ICs

Summary
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Wireless Inter-Tier Interfaces

Inductive links Capacitive links
= Manipulates magnetic flux = Manipulates electric field
between on-chip inductors between capacitor plates
= Current driven = Voltage driven
= Long communication = Short communication
distances distances
= Support multiple " Limited to face-to-face
integration styles integration
\ |/ [*] ————— [+]
N ———— W N
Magnetic flux \L l ) Electric f/eld; :‘ } ‘ Jg_'
% e M
// \\ | RX N | RX
\

*). Ouyang et al., "Evaluation of Using Inductive/Capacitive Coupling Vertical Interconnects in 3-D Network-on-Chip," 63
Proceedings of the International Conference on Computer-Aided Design, pp. 477-482, November 2010.
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State-of-the-Art Capacitive Links
= Crosstalk cancelled capacitive = Bi-directional 4 channel capacitive
coupling link
SUSMAAARR33344 |
s " =
o | Testhico R - (35x75 qu)
o W 09mmx>2.4mm_: i i
srrrrer 3‘ ‘t'“\m&& “—RX, CDR Logic -
L (150x300-um?)
2.76 .
mm (b)
"CL'I'("':'
Crwea | crwed]
] 300um
(c)
= 65 nm process = 14 nm process
= 2.31Gb/s/ch = 32 Gb/s
= 53 uW/Gb/s = 4 pl/bit
*M.-T.-L. Aung et al., “2.31-Gb/s/ch Area-Efficient Crosstalk *C. Thakkar et al., “A 32 Gb/s Bidirectional 4-channel
Cancelled Hybrid Capacitive Coupling Interconnect for 3-D 4pl/b Capacitively Coupled Link in 14 nm CMOS for
Integration,” IEEE Transactions of Very Large Scale Integration, proximity Communication,” IEEE Journal of Solid-State

Vol. 24, No. 8, pp. 2703-2711, August 2016. Circuits, Vol. 51, No. 12, pp. 3231-3245, December 2016.
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State-of-the-Art Inductive Links

The University
of Manchester

Coupled Coils

«~BGA Package~.
l' DRAM Chip 47 |

>20mm

= 1TB/s from 1,024

transceivers
20pm-Thick Emulated-100nm DRAM Chip (Upper Chip) DRAM Transceiver

e, ™ 1 pJ/bit

= 20 um separation
e & distance
%6 = BER< 106
et = 65 nm process

PCB Trace

| | PCB |

AR IR RIN TS

Caif e (& & *N.Miuraetal, “A1TB/s 1 plJ/b 6.4 mm2/TB/s QDR

S B Rt S8 8 Inductive Coupling Interface Between 65-nm CMOS

‘””'w T T ' I’f“ Logic and Emulated 100-nm DRAM,” IEEE Journal on

Gl i SRR m— : Emerging and Selected Topics in Circuits and Systems,
i e G:ULzra:rséf]'."er Vol. 2, No. 2, pp. 249-256, June 2012.

65nm CMOS GPU Chip (Lower Chip) (in Lower Chip) 65

P e e B T T A i Tl g i S
i e P b LI 1 B A b B A s R P L T T } }
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Applications of Inductive Links

The University
of Manchester

= Non-contact wafer level testing = 3-D multicore CPU
NRUANNNRNNUR N8N AN AL

[LEEE] ]
I__ :‘__ ERNid L F F
AT 1T 1A

SN AL AV A .

e £ Lt I T LTI T UL LT RS REREIV AN

= Potential platforms for novel inductive links include

e Internet of things edge devices
e Biomedical circuits and micro-fluidic sensors

*N. Miura et al., “A Scalable 3D Heterogeneous Multi-Core
Processor with Inductive-Coupling ThruChip Interface,”
Proceedings of IEEE Cool Chips XVI, pp. 1-3, April 2013.

*A. Radecki et al., “6W/25mm?2Inductive Power Transfer for Non-
Contact Wafer-Level Testing,” Proceedings of the International
Solid-State Circuits Conference, pp. 230-233, February 2011.
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Part Il — Outline

What is Contactless Communication?

Why Contactless Communication?
Fundamentals of Contactless Communication
Energy-Efficient Design of Contactless ICs

Summary
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Advantages of Contactless 3-D ICs

= Compatible with standard CMOS lithography

e Exotic geometries for inductors can affect specific steps
" No need for level shifters
= Reduced ESD protection

" Comparable performance with TSV-based inter-chip
communication

= Stacking at affordable cost

 No need for TSV or micro bump processing

TSVs and contactless 3-D integration are not competitive technologies!

68
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TSV versus Inductive Links

= Performance for area unit metric

off, =~ [Mbps / um’]

area,
= Different area consumption

e TSV vertically wiring and silicon area

e Inductive link wiring area only

(1)
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Modeling a TSV Array

.
of Manchester

The Univers

= TSV to TSV coupling

= The area occupied by a
TSV array is
ared,., = (N x M)pitch® (2)

70



Modeling of On-Chip Inductors

= Core element

= Simple RLC model

" Coupling efficiency, k=0.3
= Transceiver circuit

e H-Bridge transmitter

e Hysteresis comparator
receiver

e 20 Gbps
= |Inductive link area

area, = (NxM)d

e

out
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TSV Delay Extraction

T Signalo—%
RrprL Rrsy RppL
BW N X M Crpr —— Crsv — CrpL —— [: R Signial
_ — —2 e ¥ g

(¥ T

= Elmore delay calculation

= |Impact of TSV size, coupling, and RDL on delay
= Different TSV pitches simulated (20, 30, 40 um)
" |ncreasing TSV array (4x4, 8x8, 16x16)
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Area [mm?]

2.5

1.5

0.5

Interface Performance Density

Wide 1/0 HMC | HMC I]
. . ‘ — . BW
—+— 20 pum pitch : ; _ X 2
—— 30 ﬁm iitch : eﬁx T [Mbps / /’Lm ]
—— 40 pm pitch : i C]I’eGX
—— Inductive Link : =

weff/L=2.8
effrsv=13-72

e

1,000 1,500 2,000 2,500 3,000 3,500 4,000
Aggregate bandwidth [Gbps]

500
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Signal Multiplexing

Efficiency

2.5 1 !
——20 pm pitch
——30 pm pitch
——40 pm pitch
25 — Inductive Link
S 15f . ¢
Py
=
< 1f
e,
L
q
0.5
0 | |
121 4:1 8:1

Multiplexing ratio

*|. Papistas and V. F. Pavlidis, “Bandwidth-to-Area Comparison of Th
ICs,” Proceedings of the IEEE European Conference on Circuit Theory

rough Silicon Vias and Inductive Links for 3-D

and Design, August 2015.




TSV Processing Impact on Fabrication Cost
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(9]
o
]

|
D2W stacking ! ' W2W stacking | Interposer based :

5 45 - . — : . Compound yield

Y 40 - Tested die stacking , No test of active | stacklng loss cost
2~ ! ' ' o . '
U c | 4 N ! ield: 99% per cm o
~ 2 30 ! i Test: 100% fault coverage __S;ca_CI_(TE Z'ilif(f't___
§ § 25 1 : ! ¥/ Die test cost
v 5 20 - 1
Q5. ! | [] Interposer test cost
N s | : Il 3-D enabling cost

2 10 - £L I -

© : I : I CMOS cost

1 I
£ | : Component cost
0 B I! I I 1 I I
2 SR A AN
o % o \Y\s@ o ¢ o \Y\f,@ s> 0¥ 9% ¢o° &
o ¢\"’ @ &
& i\
¢ '@

= Different stacking options exhibit dlfferent cost overheads
e TSV processing and stacking add between 15%-35% cost overhead
e For 2.5-D systems the increase in cost reaches 66%

*V. F. Pavlidis, I. Savidis, and E. G. Friedman, Three-Dimensional Integrated Circuit Design, 2nd Edition, Morgan Kaufmann Publishers,
Elsevier, July 2017.
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Cost Benefits from Contactless 3-D Integration

The University
of Manchester

L
>

bo
X
y

‘ 3-D Pl“OCGSS

SR 3-D Process
T' 3¢
80% Testing
Stacleicing 2K
B

Backside
1x

Bonding

3-D Processing Cost

(Normalized to cost of W2W stacking)

Front-Side | | Front-Side

W2W  D2W

0 0

Three-Tier Wafer-Level Cost
(Normalized to cost of single wafer)

. W2W  D2W
"= The increase in cost from vanilla CMOS processes does not
exceed a merely 5%
e Asignificant cost advantage over TSV-based stacking

= This cost includes the additional test for KGD detection

*|. Papistas, V. F. Pavlidis, and D. Velenis, “Fabrication Cost Analysis for Contactless 3-D ICs,” IEEE Transactions on Circuits 76
and Systems lI: Express Briefs, Vol. 66, No. 5, pp. 758-762, May 2019.
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Designh Objectives for Contactless ICs

The Universit
of Manchester

Area/Cost Integrated

system design

objectives

_ _ Performance
functionality

Features of
contactless ICs

Reusability

Disposability
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Cost and Form Factor Driven Systems

of Manchester

= Lab-on-chip applications

= Conventional SoC/SiP
approaches do not support
integration of fluidics
e Required for chemical sensing

Wireless Power Inductive Link
Transfer :’
\ 4
\ Tier2-0.35pum

Analog Sensor

Sensing tier

¥
LY
d
Y
(' S II . ’
"
- ' 1 i e "
N 17DIL DA 5
O
)
b
v f
2" &) - - i
3
1 "
1 §
, % ¥
= — 1]
! L4
b
- X =3
z
o kS F .-
o—ifs =%
5 wniv: N
'aunhlu'-", |

[*] P. Georgiou et al, Institute of Biomedical Engineering, Imperial College London.
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Wired Disposable Sensor Fabrication

The University
of Manchester

E-microplate o

Sensing electrode

lllllllll r ‘ 10,00 1. 7mm x1.1C “r L ) .
_ S4700 10,06V 31, 7mm 200 SE(L) 2000m Y ? 2
: N

Al

—

Diameter 50
TSVs Height 300
Pitch 100
Thickness 2l
Vertical 30

MFis Height
Pitch 100

*M. Zia et al., ”3-D Integrated Electronic Microplate Platform for Low-Cost Repeatable Biosensing Applications,” IEEE
Transactions on Components, Packaging, and Manufacturing Technology, Vol. 6, No. 12, pp. 1827-1833, December 2016. 79
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Part Il — Outline

What is Contactless Communication?

Why Contactless Communication?
Fundamentals of Contactless Communication
Energy-Efficient Design of Contactless ICs

Summary
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Fundamentals of Contactless 3-D IC

TZ pata Transmitter Ly, Lgs Receiver Rz pata
_ _
1
fsr = (4)
21\ LC
R

Ve

— (1—a)2LRCR)+ijRRR

JoM It (5)

(1—(1)2LTCT)+j(1)CTRT

= The short communication distance between the two inductors makes pulse
modulation preferable over carrier modulation as the communication scheme
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Link Modeling

" The current I of the transmitter produced by the
digital pulse Tx4,¢, is modeled as a Gaussian pulse

4 2
It = Ip exp (— TLZ) (6)

= Assuming an ideal inductive link, the voltage induced on
the receiver is the derivative of the transmitted pulse

8t 4t2
VR = —MIPT—ZeXp (_T_2> (7)
IP Vp
'-b o~
= =
= ¥
2 3 0
75} [
3= =
g g
=
0 —Vp
Time Time
(a) (b)
*N. Miura, T. Sakurai, and T. Kuroda, “Inductive Coupled Communications,” Coupled Data Communication Techniques for High
Performance and Low-Power Computing, pp. 79-125, Springer, 2010. 82

N. Miura et al., “A 1 Tb/s 3 W Inductive-Coupling Transceiver for 3D-Stacked Inter-Chip Clock and Data Link,” IEEE Journal of Solid-State
Circuits, Vol. 42, No. 1, pp. 111-122, January 2007.
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Bound of Resonant Frequency
" The width t of the current pulse is one of the
primary parameters characterizing an inductive link

e The sensitivity margin of the receiver is directly related to
this width

" To avoid aliasing (or intersymbol interference), the

operating frequency of the link should be greater
than 2 f,

fSR>2fp=iEz£ (8)

T T

*N. Miura et al., “A 195-Gb/s 1.2-W Inductive Inter-Chip Wireless Superconnect with Transmit Power Control Scheme for 3-D-
Stacked System in a Package,” IEEE Journal of Solid-State Circuits, Vol. 41, No. 1, pp. 23-34, January 2006.
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Coupling Efficiency versus Communication Distance

= The exponent of the dependence of coupling efficiency
on distance is not constant

Saturation Linear Square Cubic

\

10()

107! b NGRS
% 102 A
1042
104 — :
10— 10° 10!
X/dout
*N. Miura, T. Sakurai, and T. Kuroda, “Inductive Coupled Communications,” Coupled Data Communication Techniques for High 84

Performance and Low-Power Computing, pp. 79—125, Springer, 2010.
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Inductor Diameter

= d_,. is the outer diameter
e of the inductor

= nisthe number of turns of
the inductor

= wis the width of the turns

= “..® §isthe space between
turns

‘—;17 L X doutnz (9)

C o dyym (10)

1
Isr % s (1)

= By substituting to (4)
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Inductive Link Interference

Wireless signals couple with nearby circuits &
Interconnects

Interference between inductive links is not negligible
Effect varies depending upon the nature of “victim”
circuit

“Victim” circuits can be categorized as

e Nearby inductive links

e Digital circuits

e Analog and sensing circuits

e Signal and power on-chip interconnects
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Interference on Neighboring Inductive Links

= Crosstalk to adjacent links similar to
received signal (50 mV)

| Magnefic/ /|
Rk

= Solutions to reduce crosstalk

e |Increase distance between links
- Not suitable for high density applications

e Time division interleaving technique

Tx0 Tx1 Txn
I ™ - Maximum division depends upon
r e performance constraints
+ L - L > - 4-phase division sufficiently mitigates
crosstalk
IkM ko . o o o
For 1 Gbps datarate time division
S Le 5 3 Lg 5 S Le S
« == £ F : e 2-phase = crosstalk of 25 mV
C C C
Y g o e 4-phase = crosstalk of 10 mV
Rx0 Rx1 Rxn
*N. Miura et al., “Crosstalk Countermeasures for High-Density Inductive-Coupling Channel Array,” IEEE Journal of 87

Solid-State Circuits, Vol. 42, No. 2, pp. 410-421, February 2007.
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Interference on Circuit Components

Inductive-Coupling Link

@ I, : Transmit Current
1

Transmitter of

]
200 I V: Voltage of Bit Line
e Voo
I Izoo fF

SRAM Cell

V’': Voltage of Bit Line

11

Diameter of inductor : 160 pm
BER = 10%
Data Rate : 250 Mbps

1.05 ]— -
Vunsa

Required Normalized Transmit Power

2ns Under Rx
- Inductor
J_LI_L @ (Solid)

PP

@ 3mm

@Inductoré
4_|_L|_L @ (Dotted)

Under Txi

3mm ¢

10 -08 -06 -04 -02 00 +0.2 +04 +0.6 +0.8 +1.0

Timing of Data Transition in Signal Line, AT [ns]

= Noise on digital circuits

e Coupling through local
interconnects

e Crosstalk on local
interconnects is negligible
- <1mV
Noise on global
interconnects is significant

Power integrity may be
compromised in high
density interfaces

*K. Niitsu et al., “Interference from Power/Signal Lines and to SRAM Circuits in 65nm CMOS Inductive-Coupling Link,” IEEE Asian
Solid-State Circuits Conference, pp.131-134, November 2007.
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Part Il — Outline

What is Contactless Communication?

Why Contactless Communication?
Fundamentals of Contactless Communication
Energy-Efficient Design of Contactless ICs

Summary
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Heterogeneous loT Edge Device

Sensor Readout

Analog

65 nm CMOS Technology

= Processing tier in 65 nm

= Sensing tier in 0.35 um

= Stacked face-up for fluidic sensing applications
= Half duplex communication supported

= Substrate thinned to 80 um

Downlink
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Inductive Link Area Considerations

" Coupling depends upon outer diameter and communication
distance

= Minimum coupling k=0.1
= This implementation
e k=0.22
e d, ,.=300um
DRC/DFM free inductor layout using VeloceRF*

= Both inductors used as transmitters and receivers

T: 65 nm

- - R: 0.35 um
Iy O p—p22 R Lp=115nH
— —
— ~  Rg=1630
JE ) L., Ca=muassE
% S i R — R R Lr=114nH
¢ Rp=130Q
= Cr = 261.57 fF
0.5R 0.5RR e

*Helic Inc, Veloce Raptor X User Manual, November 2013, v3. 91



MAN(IHII;.\TI;ER

Transceiver Circuit

T'rttni.u Delay Buffer

" Transceiver circuit

e H-Bridge transmitter

R-rrinf,u R;qum

e Sense amplifier receiver

AN Received pulse is sampled
= within a specified time
interval

e Crosstalk noise and
accidental switches are
reduced

= Biasing of differential pair
important for circuit
operation 9
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Methodology for Power Efficiency

of Manc

The Univ

= Power efficiency is the primary objective
* Piot = Prxes + Prxszso + Praes T Prxaso

= Two design approaches can be followed

e Minimization of each power component individually =
nominal design

e Exploitation of core voltage in each process node =
proposed methodology

= Tradeoff between power and sensitivity exists

0.35 um tier 65 nm tier

Vdd =3.3V Vdd=1.2V
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Device Sizing

P Device Size [pum]
. Name 0.35 um 65 nm
Touwa _ Delay Bulfe MO 3.74 =P 6.75
. M1 1.7 —> 4.5
_ﬁ%fﬁ.\_—l J_.lM&s Mﬁ|’_ M2 1.3 =p 1.5
. | M 3* 5.5 = 7.15
D M4 0.5 =% 0.6
wi ] Yo M5 0.9 =p 1.2
_“:‘ ’:“_ M6 2.6 €= 1.7
M3 M3
T = 0.35 um tier sized for minimum power
. 5 N * Sensitivity of 300 mV
_AAA ﬁl:/\/\m/\s,— = 65 nm tier sized for highest sensitivity
L%m\ Veias e Sensitivity of 75 mV

= 70% decrease in 0.35 um device width is achieved!
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Simulation Results

......... Rapara (035 pm) — Tapaa (65 2m) | ™ FUll swing signal at

Voltage [V]

= No level shifters
o o required

(a)
- —— Rxpgia (65 nm) e LB Duie (0.35 1) B P - 528 mW

uplink —
I:)uplink, avg =2.5mW

0 10 20Time [ns?o 40 0 m P yowniink = 8:67 mW
=2.38 mW

Voltage [V]

° I:)downlink, avg

*|. Papistas and V. F. Pavlidis, “Contactless Inter-Tier Communication for Heterogeneous 3-D ICs,” Proceedings of the International 95
Symposium on Circuits and Systems, pp. 2585-2588, May 2017.
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Differential Pair Mismatch Analysis

@ Hes = i N | ‘U,W ) 1350 = 501 ,U,W
a 20| 065 = 82.9 nW — = 40 O350 = 3.74 uW
5 - 3
= 5
g 10 H 5 20
g £
= =
Z. H Z
9 e Him .
2.8 229 23 23.1 23.2 233 234 490 495 500 505 510 515 520
Pavg [BW] Povg (W]

= Differential pair susceptible to device mismatch

= Length is increased to reduce the effect of random
mismatch
e [,.=120 nm = overhead APavg =7 pW
e [,.,,=500nm = overhead APavg = 30 pW

*|. Papistas and V. F. Pavlidis, “Contactless Heterogeneous 3-D ICs for Smart Sensing Systems,” Integration, the VLSI journal, Vol.
99, No. 99, April 2018.
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Fully Contactless 3-D Test Circuit

Contactless power transfer

e Two on-chip inductors

Contactless signal transfer

e Half/full duplex communication

250 um substrate thickness

e QOverall communication
distance ~270 um

0.35 um AMS technology
e Samples delivered in June 2019
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Contactless Power Transfer Block

Rectifier
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Performance (Simulation) Results
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Part Il — Outline

= What is Contactless Communication?

= Why Contactless Communication?

= Fundamentals of Contactless Communication
= Energy-Efficient Design of Contactless ICs

= Summary
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Part Il = Summary

= Contactless circuits are a promising 3-D integration
approach enabling disposability and reusability

= Fabrication cost overhead is low (< 5%)

" Noise from on-chip inductors can be significant but
mitigation techniques are available with small
overhead

" Heterogeneous inductive links can lead to more
economic and energy efficient solutions

= Data pulse width, communication distance, and outer
diameter of the inductors are primary design
parameters for inductive links
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Thank you for your attention!

Questions?
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