VALUE RANGE ANALYSIS AND FEEDBACK-DRIVEN OPTIMIZATION FOR A MIXED PRECISION COMPILER

Daniele Cattaneo, Michele Chiari, Antonio Di Bello, Stefano Cherubin, Giovanni Agosta
What is Precision Tuning?

Precision tuning is the process of adjusting the precision of the variables used in a program to improve its performance characteristics.

Done through numeric representation changes.
Example: small floating point \rightarrow big floating point, or floating point \rightarrow fixed point.
Why Precision Tuning?

• Most benefits on slow CPUs
 – Application: Embedded Systems
 (most frequent application)

• Also shown to benefit fast CPUs
 – Application: High Performance Computing
TAFFO: A New Mixed Precision Compiler

• TAFFO performs the whole precision tuning process
 – Using a state-of-the-art compiler (LLVM)
 – Incorporating state-of-the-art analyses
 – Focusing on floating-point to fixed-point
• Includes a complex code conversion module meant to operate on real-world code
• Modular and extensible
What is Handled

• Common arithmetic operations and comparisons
 – add, sub, mul, equal-to, greater-than, ...
• Memory operations
 – Arrays and pointers included
• PHI nodes, Select
• Constants
• Global Variables
• Library Functions
• Non-library Functions
Architecture of TAFFO

Initialization

Value Range Analysis

Data Type Allocation

Conversion

Feedback Estimator
Architecture of TAFFO

- Initialization
- Value Range Analysis
- Data Type Allocation
- Conversion
- Feedback Estimator
float i, j = 0;

for (i=0; i<1; i+=0.1) {
 j = j + sin(i);
}

- Uses a state-of-the-art methodology
- Based on Range Arithmetic
Value Range Analysis Algorithm

• Symbolic execution of the program using Range Arithmetic for the values
• In case of loop
 – Estimate loop trip count (via LLVM Scalar Evolution)
 – Simulate loop body that number of times OR until the symbolic values reach a fixed point
Before and after...

Before VRA:
- One annotation per variable, everywhere
- Bugs in intermediate values due to inappropriate precision choices, requiring manual tweaks
- Less type casts, more speedup

After VRA:
- Annotation of only a few key variables
- The optimized code works out of the box
- More type casts, less speedup...

The speedup loss must be regained somehow!
Feedback Estimator

1. Estimates error on user selected variables
2. Machine learning model to estimate performance
 - Metric: Instruction Mix
 - Metric: Amount & kind of code changes made by TAFFO
3. Automatically change TAFFO behavior based on collected data
Performance Estimation Metrics

- # of instructions
- # of instructions affected by TAFFO
- loop depth
- trip count
- relative instruction mix with & without TAFFO
Performance Estimation Model

• Choice of the model based on experimentation
• Best option: Gradient Tree Boosting Classification
• Classification System:
 -1: slowdown
 0: no improvement
 +1: speedup
Error Propagation

• Symbolic execution of the program using Affine Arithmetic for computing the errors at each instruction
• In case of loop (just like VRA)
 – Estimate loop trip count
 – Simulate loop body that number of times OR until the symbolic values reach a fixed point
• Always conservative!
Feedback!

• User choice: prefer low error or high performance?
 • Low error:
 – User provides a maximum error bound
 – “Precision parameter” is lowered until error reaches bound
 – If speedup classification is -1, do not use TAFFO, otherwise success!
 • High performance:
 – Same thing but symmetric
Precision Parameter?

1. Every fixed point type gets a score (= size of frac. part + size of int. part)

2. for all instructions
 - if instruction uses different types
 • if difference between scores < threshold, change types to the type with largest integer part

 • The score threshold (Q) is the “precision parameter”
Dataset

• *PolyBench/C*
 – Collection of *micro-kernels*

• *AxBench*
 – Collection of *applications* for approximate computing research
 • Financial Analysis (Black-Scholes)
 • Signal Processing (FFT)
 • Robotics (Inversek2j)
 • 3D gaming (Jmeint)
 • Machine Learning (K-means)
 • Image Processing (Sobel)
Experiments & Issues

• 98% accuracy in training (Polybench)
• 100% accuracy in production (AxBench)

• Suspiciously good...
• Need more data but code isn’t cheap to collect
Figure 2. Measured and estimated error for the Black-Scholes benchmark.

Figure 3. Measured and estimated error for the FFT benchmark.

The number of removed casts, which is shown in Figure 5, increases with q, and its variation with respect to q is consistent with the absolute error. When $q = 32$, all casts are removed, which ensures that there is a performance improvement, due to the lower number of instructions involved in the computation. In all benchmarks, the maximum value of q is 32, because this is the width of all fixed point data types used.

Figure 6 shows the relation between the number of removed casts and the measured relative error on the output. Clearly, from the point of view of numerical accuracy Black-Scholes is not very sensitive to the removal of cast instructions, as its relative error remains well below 1%, even when removing all casts. This allows the optimized version of the benchmark to achieve the maximum performance improvement.

4.2. FFT

FFT is an implementation of the Radix-2 Cooley-Tukey Fast Fourier Transform, an algorithm widely used in signal processing. It receives as an input signal a discrete rectangular wave of period K and duty cycle 1% in the time domain, and converts it into the frequency domain. Again, the output accuracy is measured by computing the absolute error.
Conclusion

• Even a rough VRA is enough to make real-world applications work
• Data shows that optimization based on feedback on Q is a sound idea
• Performance estimation based on machine learning needs more time in the oven
Question time