
VALUE RANGE ANALYSIS AND
FEEDBACK-DRIVEN OPTIMIZATION
FOR A MIXED PRECISION COMPILER

Daniele Cattaneo, Michele Chiari, Antonio Di Bello,
Stefano Cherubin, Giovanni Agosta

What is Precision Tuning?

Precision tuning is the process of
adjusting the precision of the variables used in a
program to improve its performance characteristics

Done through numeric representation changes
Example: small floating point → big floating point, or

floating point → fixed point

2

Why Precision Tuning?

• Most benefits on slow CPUs
– Application: Embedded Systems

(most frequent application)
• Also shown to benefit fast CPUs

– Application: High Performance
Computing

3

TAFFO: A New Mixed Precision Compiler

• TAFFO performs the whole precision tuning process
– Using a state-of-the-art compiler (LLVM)

– Incorporating state-of-the-art analyses

– Focusing on floating-point to fixed-point

• Includes a complex code conversion module meant to
operate on real-world code

• Modular and extensible

4

What is Handled

• Common arithmetic operations and comparisons
– add, sub, mul, equal-to, greater-than, ...

• Memory operations
– Arrays and pointers included

• PHI nodes, Select
• Constants
• Global Variables
• Library Functions
• Non-library Functions

5

Architecture of TAFFO

6

Initialization

Value Range Analysis

Data Type Allocation

Conversion

Feedback Estimator

Architecture of TAFFO

7

Initialization

Value Range Analysis

Data Type Allocation

Conversion

Feedback Estimator

Value Range Analysis

float i, j = 0;

for (i=0; i<1; i+=0.1) {
j = j + sin(i);

}

• Uses a state-of-the-art
methodology

• Based on Range Arithmetic

[0, 0.9] [0, 4.17]

8

Value Range Analysis Algorithm

• Symbolic execution of the program using Range
Arithmetic for the values

• In case of loop
– Estimate loop trip count (via LLVM Scalar Evolution)
– Simulate loop body that number of times OR until the

symbolic values reach a fixed point

9

Before and after...

• Before VRA:
– One annotation per variable,

everywhere
– Bugs in intermediate values due

to inappropriate precision choices,
requiring manual tweaks

– Less type casts, more speedup

• After VRA:
– Annotation of only a few key

variables
– The optimized code works out of

the box
– More type casts, less speedup...

10

The speedup loss must be regained somehow!

Feedback Estimator

1. Estimates error on user selected variables
2. Machine learning model to estimate performance

– Metric: Instruction Mix
– Metric: Amount & kind of code changes made by TAFFO

3. Automatically change TAFFO behavior based on
collected data

11

Performance Estimation Metrics

• # of instructions
• # of instructions affected by TAFFO
• loop depth
• trip count
• relative instruction mix with & without TAFFO

12

Performance Estimation Model

• Choice of the model based on experimentation
• Best option: Gradient Tree Boosting Classification
• Classification System:

-1: slowdown
0: no improvement
+1: speedup

13

Error Propagation

• Symbolic execution of the program using Affine
Arithmetic for computing the errors at each instruction

• In case of loop (just like VRA)
– Estimate loop trip count
– Simulate loop body that number of times OR until the

symbolic values reach a fixed point

• Always conservative!
14

Feedback!

• User choice: prefer low error or high performance?
• Low error:

– User provides a maximum error bound
– “Precision parameter” is lowered until error reaches bound
– If speedup classification is -1, do not use TAFFO, otherwise

success!
• High performance:

– Same thing but symmetric

15

Precision Parameter?

1. Every fixed point type gets a score (= size of frac. part
+ size of int. part)

2. for all instructions
– if instruction uses different types

• if difference between scores < threshold, change types to the type
with largest integer part

• The score threshold (Q) is the “precision parameter”

16

Dataset
• PolyBench/C

– Collection of micro-kernels
• AxBench

– Collection of applications for approximate computing research
• Financial Analysis (Black-Scholes)
• Signal Processing (FFT)
• Robotics (Inversek2j)
• 3D gaming (Jmeint)
• Machine Learning (K-means)
• Image Processing (Sobel)

17

Experiments & Issues

• 98% accuracy in training (Polybench)
• 100% accuracy in production (AxBench)

• Suspiciously good...
• Need more data but code isn’t cheap to collect

18

19
Black-Scholes from AxBench

September 2019

0 10 20 30
2

3

4

5

6
·10�7

q

A
bs

ol
ut

e
er

ro
r

Measured

0 10 20 30

3.738

3.740

3.742

·10�5

q

Estimated

Figure 2. Measured and estimated error for the Black-Scholes benchmark.

0 10 20 30

5 ·10�2

0.1

0.15

0.2

q

A
bs

ol
ut

e
er

ro
r

Measured

0 10 20 30
0

100

200

300

q

Estimated

Figure 3. Measured and estimated error for the FFT benchmark.

final parameter setting. If, on the contrary, it is set to maximize performance, it chooses
q = 32, as the estimated error remains acceptable.

The number of removed casts, which is shown in Figure 5, increases with q, and its
variation with respect to q is consistent with the absolute error. When q = 32, all casts
are removed, which ensures that there is a performance improvement, due to the lower
number of instructions involved in the computation. In all benchmarks, the maximum
value of q is 32, because this is the width of all fixed point data types used.

Figure 6 shows the relation between the number of removed casts and the measured
relative error on the output. Clearly, from the point of view of numerical accuracy Black-
Scholes is not very sensitive to the removal of cast instructions, as its relative error re-
mains well below 1%, even when removing all casts. This allows the optimized version
of the benchmark to achieve the maximum performance improvement.

4.2. FFT

FFT is an implementation of the Radix-2 Cooley-Tukey Fast Fourier Transform, an al-
gorithm widely used in signal processing. It receives as an input signal a discrete rectan-
gular wave of period K and duty cycle 1% in the time domain, and converts it into the
frequency domain. Again, the output accuracy is measured by computing the absolute
error.

The measured and estimated errors are reported in Figure 3. This time, the esti-
mated error becomes extremely high for q � 4, exceeding the user-defined error thresh-

Conclusion

• Even a rough VRA is enough to make real-world
applications work

• Data shows that optimization based on feedback on Q
is a sound idea

• Performance estimation based on machine learning
needs more time in the oven

20

Question time

