

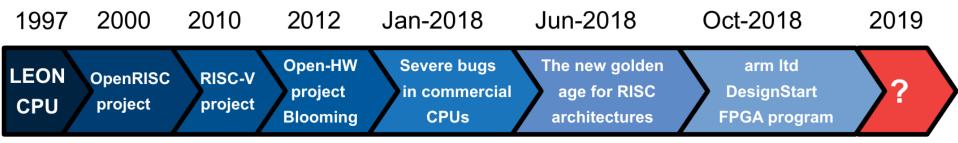
POLITECNICO MILANO 1863

Design and implementation of an efficient Floating Point Unit (FPU) in the IoT era

OPRECOMP summer of code NiPS Summer School Sept 3-6, 2019 Perugia, Italy Andrea Galimberti Andrea Romanoni **Davide Zoni**

The computing platforms in the Internet-of-Things (IoT) era

Efficient computing: challenges and opportunities in the Internet-of-Things (HiPEAC vision 2019*)


- Distributed data processing
- Specific requirements and constraints at each stage
- Revise the design of the System-on-Chip to maximize efficiency

* HiPEAC Vision 2019: https://www.hipeac.net/vision/2019/

2

Open-hardware platforms for research

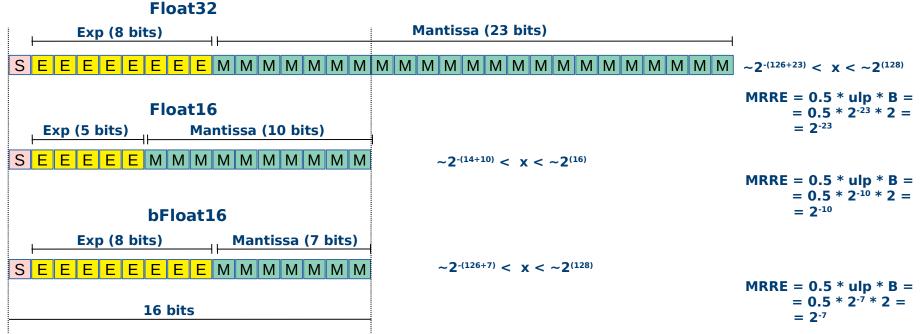
Motivations (HiPEAC 2019):

- Design open-hardware computing platforms for efficiency, security and safety
- Trustfulness and security requirements
- Computational efficiency

Spectre and meltdown: ICT cannot rely on closed-hardware solutions European Processor Initiative

Successful open-hardware projects

Limitations of current open-hardware solutions:


- Monolithic solutions, not modular
- Targeting efficient computation
- Mainly focused to ASIC design flow
- Not for research in microarchitecture

Let's focus on a single optimization direction ...

Floating point data transfer and computation dominate the energy consumption

The motivation behind the bfloat16 format

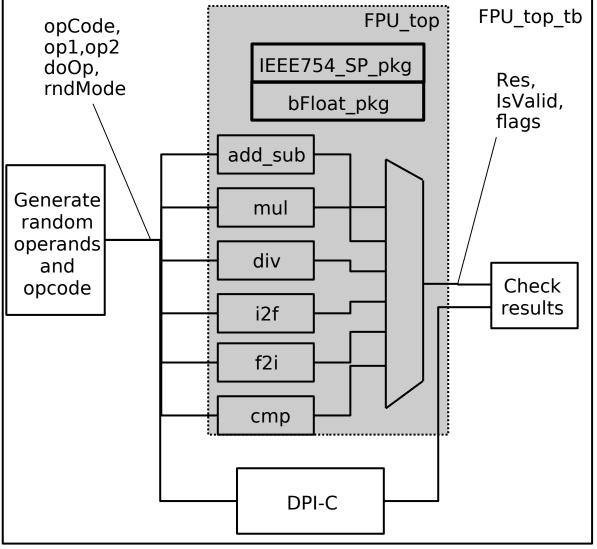
Brain-inspired Float (bfloat16): same format of the IEEE754 single-precision (SP) floating-point standard but truncates the mantissa field from 23 bits to 7 bits.

Motivations:

- Better timing and smaller area
- For machine learning tasks a 7 bit mantissa is enough (Google and Intel)
- Still possible to represent tiny values
- Easier debugging than float16 since bfloat16 shares the same format of the IEEE754-SP standard

/ 11

single SystemVerilog design that implements **bFloat** and **IEEE-754** single-precision


Goals and status of the project

Efficient FPU for IoT SoCs, i.e., lamp-platform: both timing and area efficient

Reproducible results:

- new set of benchmarks targeting machine learning, vision and IA
- validation infrastructure using Xilinx Vivado, coupled with SystemVerilog DPI-C and random
- features. Free tools only

Design and verification methodology

Flexibility

- Two SV packages implementing the functions for each operation according to the selected size of the mantissa;
- Each operation can be either implemented or not

Efficiency:

 Rounding scheme can be configured to consider N LSB bits to optimize timing/area;

Constrained rnd verification using gcc and Xilinx Vivado

Area and timing: preliminary results

Operation	Area (LUT)							
Operation	mor1kx (rnd=248LUT)	FPU-IEEE754-SP	FPU-bFoat					
mul div	625	1114	504					
add/sub	281	683	248					
f2i	170	222	140					
i2f	124	225	157					
cmp	-	83	48					
Total	1492	3245	1497					

Operation	Timing						
Operation	mor1kx	FPU-IEEE754-SP	FPU-bFoat				
mul	50	28.03	22.09				
div	170						
add/sub	40	22.12	16.71				
f2i	20	9.28	8.48				
i2f	20	11.17	10.25				
cmp	10	4.26	4.27				
worst	170	28.03	22.09				

- We optimize each operation in the FPU to improve the timing
- The reduction in the mantissa improves both area and timing
- The proposed FPU allows to selectively implement a subset of the available operations
- NOTE: Flip-Flops results are not reported

/ 11

New set of benchmarks targeting machine learning, vision and IA

FPU integration in the lamp-platform

POLITECNICO MILANO 1863

FPU benchmarks for IoT System-on-Chip*

Motivations:

- Bare-metal C code for IoT devices (different from PARSEC and SPLASH2 bench suites)
- Consider emerging computing scenarios:

(computer vision, computer graphics, machine learning)

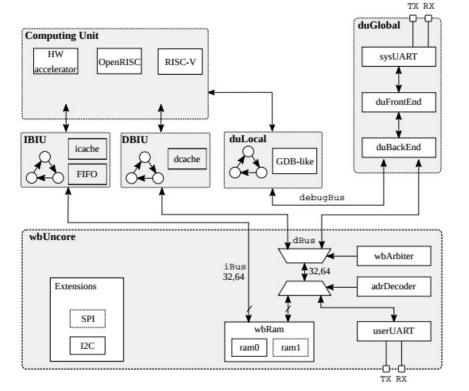
bits in the mantissa (tolerance 0.001)		Number of bits in the mantissa										
		22	21	19	17	15	13	11	9	7	5	3
Laplacian Smoothing	0	0	0	0	0	67	161	199	220	228	229	231
Nuormals computation		0	0	0	0	0	0	0	127	378	426	444
Facet Subdivision		0	0	0	0	52	160	198	208	217	222	224
Self Intersection	0	0	0	0	0	6	5	5	5	6	22	30
ZNCC	0	0	0	0	0	0	1	1	1	1	1	1
Ray Triangle Intesection	0	0	0	0	0	0	1	4	15	18	21	21
Kalman Filter	0	0	0	0	0	3	49	83	92	98	98	100
Neares Neighbor		0	0	0	0	0	0	0	3	12	31	84
Linear Regression	0	0	8	46	62	67	89	124	128	134	133	134
K-Means	0	0	0	0	0	0	0	3	3	3	304	304
Q-learning	0	0	0	12	13	13	13	13	13	13	13	13
LSTM	0	0	4	16	18	19	20	20	20	20	19	20

Errors as function of the

* Project website: www.lamp-platform.org

9

Lightweight Application-specific Modular Processor (LAMP)*


Key idea: The Raspberry successful story

A small and affordable computer that you can use to learn programming

Our vision:

LAMP-platform: a flexibile and affordable System-on-Chip for investigating IoT challenges

Contributions:

- FPGA targets with up to 4k LUTs with CPU (a RISC-V 5 stage CPU is offered as well)
- Modular design to target different design metrics
 - For example: Side-channel evaluation using the same design in post-synthesis, postimplementation and board
- Designed for Artix 7 FPGA family
- Easily plug different computing devices (request/response data/instruction interface)

* Project website: www.lamp-platform.org

10 / 11

Andrea Galimberti, PhD Student Email: andrea.galimberti@polimi.it

Andrea Romanoni, PhD Email: andrea.romanoni@polimi.it

Davide Zoni, PhD Email: davide.zoni@polimi.it

OPRECOMP 2019 - A. Galimberti, A. Romanoni and D. Zoni 11

/ 11

POLITECNICO MILANO 1863