
Time Series Analysis
Using Transprecision Computing

Ivan Fernandez Vega
OPRECOMP Summer of Code

4 September 2019

About me

2

■ 2nd-year PhD Student at University of Malaga (Spain)
■ Advisors: Oscar Plata and Eladio Gutierrez
■ Research topic: Acceleration of time series analysis
■ Currently at ETH Zürich as an academic guest in SAFARI group,

supervised by Prof. Onur Mutlu

Outline

■ Introduction

■ Background

■ Implementation

■ Results

■ Conclusions and Future Work

3

Introduction

4

Introduction
■ Time series analysis has a huge interest in many fields

■ Climate
■ Seismology
■ Entomology
■ Bioinformatics

■ Traffic Prediction
■ Voice Recognition
■ Energy Conservation
■ Sensor Anomaly Detection

5

Introduction
■ Matrix Profile (from

UCR Riverside)
■ Open source tool for

motif discovery
(anomalies,
similarities, …)

■ Implemented in
several languages:
C++, Python, CUDA,
R, MATLAB

Matrix Profile website

6

Introduction

7

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

■ Similarity example

■ Anomaly example

Time series

Matrix Profile

Observation
Similarities
appear as
lower values
of Matrix
Profile

Observation
Anomalies
appear as
higher values
of Matrix
Profile

Motivation

8

■ Real data example: electrocardiogram

■ In this case there are two anomalies annotated by MIT cardiologists

■ Here the subsequence length was set to 150, but we still find these
anomalies if we half or double that length

1000 2000 3000 4000 5000 6000 7000

1000 2000 3000 4000 5000 6000 7000
0

5

Anomaly:
ectopic beat

Anomaly:
premature
ventricular
contraction

Motivation

9

■ Typical data type used for the computation is double precision,
while the algorithm allows for single or mixed precision

■ No previous study using lower precision or flex float approach

■ Analysing a time series of 131,072 elements using a window size
of 1,024 elements requires:

2.4 Billion subtractions (-)
2.7 Billion multiplications (*)
2.9 Billion divisions (/)
2.8 Billion multiply-accumulations (FMA)

+ 2.8 Billion comparisons (<)

13.6 Billion operations !!!

Observation
The number
of operations
increases
exponentially
with the time
series length

Background

10

Distance Matrix

11

Matrix Profile: a vector of distance between each
subsequence and its most similar one

di,j is the distance
between the ith

window and the jth
window of the

time series

d1,1 d1,2 … … … d1,n-m+1
d2,1 d2,2 … … … d2,n-m+1

… … … … … …
di,1 di,2 … di,j … di,n-m+1
… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-
m+1

j th

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1

D1

D2

Di

Dn-m+1

i th

- Symmetric
matrix
- Main
diagonal = 0
- Cells close
to diagonal
very small

Distance metric
■ The similarity di,j is based on Euclidean distances:

■ The dot product (Qi,j) can be calculated as follows:

12

Implementation

13

Goal
■ The goal is to provide a benchmark to explore how the accuracy

of the results of SCRIMP are affected by changing the precision
of the floating-point operations

■ This tool would be useful for architects when designing a
custom accelerator for time series analysis

■ The implementation is open source and based on FlexFloat

FlexFloat @ Github

14

SCRIMP FF
■ SCRIMP FF computation scheme and configuration parameters

precomputation
of statistics

initialization of
matrix profile

dot product
calculation or

update

distance
calculation

matrix profile
update

start

more
diagonals

?
end

15

Configurable
precisions

Statistics
(μ and σ)

Dot product

Distance

Matrix profile

The user can
configure
individually
the precision
for each
block via a
config file

OpenMP
parallel
region

User Interface
■ SCRIMP FF example input:

./scrimp_ff power_demand.txt 200 72 0.1

■ SCRIMP FF example output:

16

scale factor# threadswindow sizetime series filebinary

original
time
series

absolute
error
%

result using
original
implementation
(64 bits)

result using
FlexFloat
implementation

Results

17

Experiments

18

■ The benchmark has been tested using a server equipped with two
Intel Xeon Gold 6154 (72 threads) and 384 GB of DDR4 memory

■ Each FlexFloat execution is compared with the original code

■ In this presentation I cover four didactical examples:
❑ (1) Synthetic random time series with one anomaly

❑ (2) Synthetic random time series with two (very)
similar subsequences

❑ (3) Real data time series with four anomalies

❑ (4) Real data time series with twelve anomalies

Computing a
32,768
elements
time series
takes approx.
4 minutes in
this sever

Random Serie Anomaly

19

■ Case study #1
❑ Random time series
❑ Values from 0 to 100
❑ 32,768 elements
❑ 50 window size length
❑ One anomaly

Random Serie Anomaly - 64 Bits

20

Observation
Using 64-bit
precision and
Flex Float we
obtain no
error, as
expected

Random Serie Anomaly - 32 Bits

21

Observation
Using 32-bit
precision and
Flex Float we
still obtain no
error!!

Random Serie Anomaly - Reduced

22

Observation
When we
reduce
significantly
the precision
we get just
~10% error

Random Serie Anomaly - Profile Zoom

23

Observation
The anomaly
is very easily
detectable
using the
Flex Float
approach

Random Serie Similarity

24

■ Case study #2
❑ Random time series
❑ Values from 0 to 100
❑ 32,768 elements
❑ 50 window size length
❑ Two (very) similar

subsequences

Random Serie Similarity - 64 bits

25

Observation
Using 64-bit
precision and
Flex Float we
obtain no
error, as
expected

Random Serie Similarity - 32 Bits

26

Observation
Using 32-bit
precision and
Flex Float we
still obtain no
error!!

Random Serie Similarity - Reduced

27

Observation
We obtain
error in the
lower values,
however they
are still
detectable

Random Serie Similarity - Profile Zoom

28

Observation
The
similarities
are still
detectable
using Flex
Float

Taxi Demand Data

29

■ Case study #3
❑ Taxi demand data
❑ 3,600 elements
❑ 50 window size length
❑ Four anomalies

Taxi Demand Data - 64 Bits

30

Observation
Using 64-bit
precision and
Flex Float we
obtain no
error, as
expected

Taxi Demand Data - 32 Bits

31

Observation
Using 32-bit
precision and
Flex Float we
still obtain no
error!!

Taxi Demand Data - Reduced

32

Observation
We obtain
error in lower
values, but
anomalies
are still
detectable

Taxi Demand Data - Profile Zoom

33

Observation
The
anomalies
are still
detectable
using Flex
Float

Power Demand Data

34

■ Case study #4
❑ Electric power demand data
❑ 30,000 elements
❑ 50 window size length
❑ Twelve anomalies

Power Demand Data - 64 Bits

35

Observation
Using 64-bit
precision and
Flex Float we
obtain no
error, as
expected

Power Demand Data - 32 Bits

36

Observation
Using 32-bit
precision and
Flex Float we
still obtain no
error!!

Power Demand Data - Reduced

37

Observation
We obtain
error in lower
values, but
anomalies
are still
detectable

Power Demand Data - Profile Zoom

38

Observation
The
anomalies
are still
detectable
using Flex
Float

Conclusions and
Future Work

39

Conclusions and Future Work

40

■ Matrix profile can be useful for many time series motif discovery
applications

■ SCRIMP FlexFloat benchmark allows the exploration of reduced
precision computation of Matrix Profile

■ Architects could design accelerators using the exact amount of
precision needed for each application, maximizing performance
and minimizing energy consumption

■ Future work comprises evaluating time series analysis using a non
emulated transprecision computing environment as pulp-platform

References

41

■ Some of the examples are taken from the Matrix Profile tutorial
available at https://www.cs.ucr.edu/~eamonn/MatrixProfile.html

■ SCRIMP:
■ Zhu, Y., Yeh, C. C. M., Zimmerman, Z., Kamgar, K., & Keogh,

E. (2018, November). Matrix profile XI: SCRIMP++: time
series motif discovery at interactive speeds. In 2018 IEEE
International Conference on Data Mining (ICDM) (pp. 837-
846). IEEE.

■ https://sites.google.com/site/scrimpplusplus/

■ FlexFloat:
■ G. Tagliavini, A. Marongiu and L. Benini, "FlexFloat: A Software

Library for Transprecision Computing," in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems.

■ https://github.com/oprecomp/flexfloat

https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
https://sites.google.com/site/scrimpplusplus/
https://github.com/oprecomp/flexfloat

Time Series Analysis
Using Transprecision Computing

Ivan Fernandez Vega
OPRECOMP Summer of Code

4 September 2019

