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Introduction
■ Time series analysis has a huge interest in many fields

■ Climate
■ Seismology
■ Entomology
■ Bioinformatics

■ Traffic Prediction
■ Voice Recognition
■ Energy Conservation
■ Sensor Anomaly Detection
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Introduction
■ Matrix Profile (from 

UCR Riverside)
■ Open source tool for 

motif discovery 
(anomalies, 
similarities, …)

■ Implemented in 
several languages: 
C++, Python, CUDA, 
R, MATLAB

Matrix Profile website
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Introduction
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■ Similarity example

■ Anomaly example

Time series

Matrix Profile

Observation
Similarities 
appear as 
lower values 
of Matrix 
Profile

Observation
Anomalies 
appear as 
higher values 
of Matrix 
Profile



Motivation
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■ Real data example: electrocardiogram

■ In this case there are two anomalies annotated by MIT cardiologists 

■ Here the subsequence length was set to 150, but we still find these 
anomalies if we half or double that length

1000 2000 3000 4000 5000 6000 7000

1000 2000 3000 4000 5000 6000 7000
0
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Anomaly: 
ectopic beat

Anomaly: 
premature 
ventricular 
contraction



Motivation
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■ Typical data type used for the computation is double precision, 
while the algorithm allows for single or mixed precision

■ No previous study using lower precision or flex float approach

■ Analysing a time series of 131,072 elements using a window size 
of 1,024 elements requires:

2.4 Billion subtractions (-)
2.7 Billion multiplications (*)
2.9 Billion divisions (/)
2.8 Billion multiply-accumulations (FMA)

+ 2.8 Billion comparisons (<)

13.6 Billion operations !!!

Observation
The number 
of operations 
increases 
exponentially 
with the time 
series length



Background
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Distance Matrix
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Matrix Profile: a vector of distance between each 
subsequence and its most similar one

di,j is the distance 
between the ith

window and the jth
window of the 

time series 

d1,1 d1,2 … … … d1,n-m+1
d2,1 d2,2 … … … d2,n-m+1

… … … … … …
di,1 di,2 … di,j … di,n-m+1
… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-
m+1

j th

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1

D1

D2

Di

Dn-m+1

i th

- Symmetric 
matrix
- Main 
diagonal = 0
- Cells close 
to diagonal  
very small



Distance metric
■ The similarity di,j is based on Euclidean distances:

■ The dot product (Qi,j) can be calculated as follows:
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Implementation
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Goal
■ The goal is to provide a benchmark to explore how the accuracy

of the results of SCRIMP are affected by changing the precision 
of the floating-point operations

■ This tool would be useful for architects when designing a 
custom accelerator for time series analysis

■ The implementation is open source and based on FlexFloat

FlexFloat @ Github
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SCRIMP FF
■ SCRIMP FF computation scheme and configuration parameters

precomputation 
of statistics

initialization of 
matrix profile

dot product 
calculation or 

update

distance 
calculation

matrix profile 
update

start

more 
diagonals

?
end
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Configurable 
precisions

Statistics 
(μ and σ)

Dot product

Distance

Matrix profile

The user can 
configure 
individually 
the precision 
for each 
block via a 
config file

OpenMP
parallel 
region 



User Interface
■ SCRIMP FF example input: 

./scrimp_ff power_demand.txt    200      72     0.1

■ SCRIMP FF example output: 
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scale factor# threadswindow sizetime series filebinary 

original 
time 
series 

absolute
error
%

result using 
original 
implementation 
(64 bits)

result using 
FlexFloat 
implementation 



Results
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Experiments
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■ The benchmark has been tested using a server equipped with two 
Intel Xeon Gold 6154 (72 threads) and 384 GB of DDR4 memory

■ Each FlexFloat execution is compared with the original code

■ In this presentation I cover four didactical examples:
❑ (1) Synthetic random time series with one anomaly

❑ (2) Synthetic random time series with two (very) 
similar subsequences

❑ (3) Real data time series with four anomalies

❑ (4) Real data time series with twelve anomalies

Computing a 
32,768 
elements 
time series 
takes approx. 
4 minutes in 
this sever



Random Serie Anomaly
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■ Case study #1
❑ Random time series
❑ Values from 0 to 100
❑ 32,768 elements
❑ 50 window size length
❑ One anomaly



Random Serie Anomaly - 64 Bits
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Observation
Using 64-bit 
precision and 
Flex Float we 
obtain no 
error, as 
expected



Random Serie Anomaly - 32 Bits
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Observation
Using 32-bit 
precision and 
Flex Float we 
still obtain no 
error!!



Random Serie Anomaly - Reduced
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Observation
When we 
reduce 
significantly 
the precision  
we get just 
~10% error



Random Serie Anomaly - Profile Zoom
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Observation
The anomaly 
is very easily 
detectable 
using the 
Flex Float 
approach



Random Serie Similarity
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■ Case study #2
❑ Random time series
❑ Values from 0 to 100
❑ 32,768 elements
❑ 50 window size length
❑ Two (very) similar 

subsequences



Random Serie Similarity - 64 bits
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Observation
Using 64-bit 
precision and 
Flex Float we 
obtain no 
error, as 
expected



Random Serie Similarity - 32 Bits
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Observation
Using 32-bit 
precision and 
Flex Float we 
still obtain no 
error!!



Random Serie Similarity - Reduced
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Observation
We obtain 
error in the 
lower values, 
however they 
are still 
detectable 



Random Serie Similarity - Profile Zoom
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Observation
The 
similarities 
are still 
detectable 
using Flex 
Float 



Taxi Demand Data
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■ Case study #3
❑ Taxi demand data
❑ 3,600 elements
❑ 50 window size length
❑ Four anomalies



Taxi Demand Data - 64 Bits
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Observation
Using 64-bit 
precision and 
Flex Float we 
obtain no 
error, as 
expected



Taxi Demand Data - 32 Bits
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Observation
Using 32-bit 
precision and 
Flex Float we 
still obtain no 
error!!



Taxi Demand Data - Reduced
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Observation
We obtain 
error in lower 
values, but  
anomalies 
are still 
detectable 



Taxi Demand Data - Profile Zoom
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Observation
The 
anomalies 
are still 
detectable 
using Flex 
Float 



Power Demand Data
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■ Case study #4
❑ Electric power demand data
❑ 30,000 elements
❑ 50 window size length
❑ Twelve anomalies



Power Demand Data - 64 Bits
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Observation
Using 64-bit 
precision and 
Flex Float we 
obtain no 
error, as 
expected



Power Demand Data - 32 Bits
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Observation
Using 32-bit 
precision and 
Flex Float we 
still obtain no 
error!!



Power Demand Data - Reduced
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Observation
We obtain 
error in lower 
values, but  
anomalies 
are still 
detectable 



Power Demand Data - Profile Zoom
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Observation
The 
anomalies 
are still 
detectable 
using Flex 
Float 



Conclusions and
Future Work

39



Conclusions and Future Work
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■ Matrix profile can be useful for many time series motif discovery 
applications

■ SCRIMP FlexFloat benchmark allows the exploration of reduced 
precision computation of Matrix Profile

■ Architects could design accelerators using the exact amount of 
precision needed for each application, maximizing performance 
and minimizing energy consumption

■ Future work comprises evaluating time series analysis using a non 
emulated transprecision computing environment as pulp-platform
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