
OPRECOMP Summer of Code Presentation 4th September at
Architectures and Algorithms for Energy-Efficient IoT and HPC Applications 
(Perugia, Sept 2019)

EECS

Matthew Tang (matthew.tang@qmul.ac.uk)

School of Electronic Engineering 
and Computer Science

Circuit Design and Analysis for 
Approximate Integer Format

Updated: 4 September 2019



Overview

• Gao's Approximate Integer Format (AIF)
• Algorithm for AIF addition
• AIF Adder design
• Experimental results
• Pipelined version
• Conclusion / future work
• Q & A

2



Approximate Integer Format (AIF)

• Gao et al "A Novel Data Format for Approximate 
Arithmetic Computing", ASPDAC, 2017.

• Aim to enable approximate arithmetic at ISA level 
by providing extra hardware called AIF modules (i.e. 
checkers, adders, multipliers)

• A data word is partitioned into (data) blocks.
– The block size is 4 bits (as in the paper).
– A block is valid if it is non-zero.
– Sentinel (ST) bits: mark the position of the largest valid 

data blocks

3



AIF: Examples

4

16-bit word, 1 st 3 data blocks, block size k = 4
ST D2 D1 D0

e.g. 6128 = 0x184A = 0001 1000 0100 1010
approximates as
1111 0001 1000 0100

32-bit word, 2 st 6 data blocks, block size k = 4
ST0 D5 D4 D3

e.g. 5109881 = 0x004DF879
approximates as
0011 1111 0100 1101 1111 1000 0111 1001

ST1 D2 D1 D0



AIF: Addition
• The format is accurate when the integer is small.

32 bits: accurate < 224; approximate: 224 <= x < 232

• In arithmetic operations, further approximation is introduced 
by a precision control (pc) parameter, e.g. pc = 4 for 6 data 
blocks.
Reduce bit width for adder and thus area and power.

• Overheads: to expand compressed data, to maintain sentinel 
blocks, and to align the sum when there is a carry out.

5

Are these overheads justified? 
Could that be compensated by area and power improvement, 
given a reasonably efficient implementation?



AIF Addition Algorithm

6

1111 DA
5 DA

4 DA
30111 DA

2 DA
1 DA

0

1111 DB
5 DB

4 DB
30011 DB

2 DB
1 DB

0

+

OR

=

pc=4DA
5 DA

4 DA
3 DA

2

DB
5 DB

4 DB
3

+ aligned data blocks
rounding ignored

D5 D4 D3 D2 0 0

=
carry? 0

no

yes D5 D4 D3 00001

fill in zeros

11110111

11110011

11110111

11111111 D2



7

AIF Adder: Design (1)
Decompression: Mux arranged like a barrel shifter

Selection: pick the right blocks

D4 D3 D3 D2 D2 D1 D1 D0D4D5

ST(6)
D0 0

ST(7)

0 0

Y4 Y3 Y1 Y0Y5 Y2Y6Y7

D50

Y4 Y3Y5Y6Y7

ST(7 downto 3)

Y3 Y2Y4Y5Y6
…

Y1 Y0Y2Y3Y4

+
Addition

+ …
carry chain



8

AIF Adder: Design (2)

Alignment

Co

S3

+ +

S2

+

S1

+
S0

ST(4)

ST(5) AND (not Co)

0

D3 D2 D0D4 D1D5

Co S3 S2 S1 S0 0S0S1S2S3Co

0

Generate new ST blocks

OR
ST(2)ST(3)ST(4)ST(5) ST(0)ST(1)ST(6)ST(7)

C(1)C(2)C(3)C(3) 1C(0)C(3)C(3)

ST(4)ST(5)ST(6)
AND



Experimental Results: on FPGA

• Modelled in VHDL, simulated & verified with ModelSim
• Tools: Quartus Prime Lite 18.1

Target: Cyclone V
• Application: Fibonacci series generator

9

Design Comb. ALUTs

Accurate 32-bit adder 32

Approximate adder 32-bit AIF 183

Selection layer 80
Decompression layer 48
Addition layer 20
Alignment layer 24
ST generation 11

Timing Analysis:
Fmax: 99.56 MHz



Pipelining the AIF Adder

10

Selection layer

Y4 Y3Y5Y6Y7

ST(7:3)

Y3 Y2Y4Y5Y6
…

Y1 Y0Y2Y3Y4

+

Addition

+ …
carry chain

S3 S2

registers



Results: Pipelined AIF Adder

• FPGA is well optimized with carry chains and rich in registers.
• 3-stage pipeline: after selection and addition layers
• This improves throughout but the results show some penalty 

in latency.

11

Design Comb. ALUTs

Accurate 32-bit adder 32

3-stage Pipelined Approximate 
adder 32-bit AIF

168

Selection layer 61
Decompression layer 48
Addition layer 20
Alignment layer 25
ST generation 14

Timing Analysis:
Fmax: 167.20 MHz

Dedicated Logic 
Registers: 66



Conclusion

• Despite optimistic results presented in the paper 
(e.g. 50% normalized power consumptions), AIF 
suffers from significant overheads that hinders its 
practical usages.

• The decompression, selection and alignment of 
data blocks are intrinsic to the format. This 
definitely slows down the whole AIF addition, 
despite fewer bits to add.

• Pipelining can help, under the assumption that AIF 
additions are carried out in batches.

12



Future (Unfinished?) work

• Customization based on pc
• Extension to subtraction/signed adder
• Extension to multiplier
• Performance and power analysis based on 

standard cell synthesis and implementation

13

Any questions?
Matthew Tang

matthew.tang@qmul.ac.uk


