\a_@_s' Queen Mary EECS

University of London

School of Electronic Engineering
and Computer Science

Circuit Design and Analysis for
Approximate Integer Format

OPRECOMP Summer of Code Presentation 4th September at
Architectures and Algorithms for Energy-Efficient loT and HPC Applications
(Perugia, Sept 2019)

Updated: 4 September 2019 Matthew Tang (matthew.tang@gmul.ac.uk)

Overview

 Gao's Approximate Integer Format (AlF)
* Algorithm for AIF addition

* AIF Adder design

 Experimental results

* Pipelined version

e Conclusion / future work

e Q&A

Approximate Integer Format (AlF)

e Gao et al "A Novel Data Format for Approximate
Arithmetic Computing", ASPDAC, 2017.

 Aim to enable approximate arithmetic at ISA level
by providing extra hardware called AIF modules (i.e.
checkers, adders, multipliers)

* A data word is partitioned into (data) blocks.
- The block size is 4 bits (as in the paper).
- A block is valid if it is non-zero.

- Sentinel (ST) bits: mark the position of the largest valid
data blocks

AlF: Examples

16-bit word, 1 st 3 data blocks, block size k = 4
st | b, | b, | b

e.g. 6128 =0x184A=0001 1000 0100 1010
approximates as
1111 0001 1000 0100

32-bit word, 2 st 6 data blocks, block size k =4

sT, | stT, | D D, D, D, D,

e.g. 5109881 = 0x004DF879
approximates as
0011 1111 0100 1101 1111 1000 0111 1001

AlF: Addition

 The format is accurate when the integer is small.
32 bits: accurate < 224; approximate: 224 <= x < 232

e |n arithmetic operations, further approximation is introduced
by a precision control (pc) parameter, e.g. pc = 4 for 6 data
blocks.

Reduce bit width for adder and thus area and power.

 Overheads: to expand compressed data, to maintain sentinel
blocks, and to align the sum when there is a carry out.

Are these overheads justified?
Could that be compensated by area and power improvement,
given a reasonably efficient implementation?

AlF Addition Algorithm

0111 | 1111 | DA; | DA, | DA; | DA, | DA, | DA,
+
0011 | 1111 | DB | DB, | DB; | DB, | DB, | DB,
o111 | 1111 DA, | o~ | oo, [b2, | pe=4
OR + aligned data blocks
o011 | 1111 carmy2[0 | Do, | pe, | e, rounding ignored
I l I fill in zeros
0111 | 1111 no | Dg | D, | D; | D, 0] 0]
1111 | 1111 | yes 0001| D, | ENERE

AIF Adder: Design (1)

Decompression: Mux arranged like a barrel shifter

ST(7)

o |p.||os|p.]]|Ds|Ds][Ds]D.]| . |D:][D)]| D0][6] 0
ST(6) /
0 0
Y, Y, Y, Y, Y, Y, Y, Y,
Selection: pick the right blocks
AN A A ARRARARAR AR A FARAR
7 7 ~
/ AN

-~

ST(7 downto 3)

carry chain

Addition

Y\

AlF Adder:

A

o

\

Alignment

Design (2)

_/

AT AT/

ST(4) 4_

ST(5) AND (not Co)

Generate new ST blocks

AND

+ +

S3 S, Sy So
ofcfe]ss | ss|s.|s]s s]so]]|so]0
é O
Y

D, D, D, D, D, D,
ST(7) | ST(6) | ST(5) | ST(4) | ST(3) | ST(2) | ST(1) | ST(O)

OR

c3d | ey |l c3) | c3 | c@ | ca | co | 1
ST(6) | ST(5) | ST(4)

Experimental Results: on FPGA

e Modelled in VHDL, simulated & verified with ModelSim
e Tools: Quartus Prime Lite 18.1

Target: Cyclone V

* Application: Fibonacci series generator

Accurate 32-bit adder
Approximate adder 32-bit AIF
Selection layer
Decompression layer

Addition layer

Alignment layer

ST generation

Timing Analysis:

32 Fmax: 99.56 MHz
183

80
48
20
24
11

Pipelining the AlF Adder

Selection layer

ST(7:3)

carry chain ; ___/ ;

Addition

\

-+

/

S3

registers

10

AR A N2
. \ /
\\

Results: Pipelined AlIF Adder

 FPGA is well optimized with carry chains and rich in registers.
o 3-stage pipeline: after selection and addition layers
* This improves throughout but the results show some penalty

In latency.

Accurate 32-bit adder

3-stage Pipelined Approximate
adder 32-bit AIF

Selection layer
Decompression layer
Addition layer
Alignment layer

ST generation

32
168

ol
48
20
25
14

Timing Analysis:
Fmax: 167.20 MHz

Dedicated Logic
Registers: 66

11

Conclusion

 Despite optimistic results presented in the paper
(e.g. 50% normalized power consumptions), AlF
suffers from significant overheads that hinders its
practical usages.

* The decompression, selection and alignment of
data blocks are intrinsic to the format. This
definitely slows down the whole AlF addition,
despite fewer bits to add.

* Pipelining can help, under the assumption that AlF
additions are carried out in batches.

12

Future (Unfinished?) work

Customization based on pc
Extension to subtraction/signed adder
Extension to multiplier

Performance and power analysis based on
standard cell synthesis and implementation

Any questions?

Matthew Tang
matthew.tang@qmul.ac.uk

13

