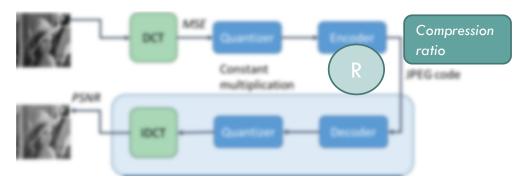
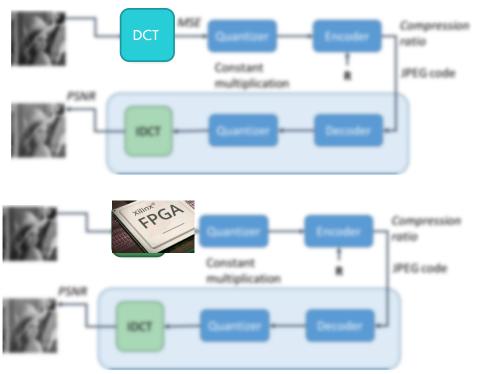

EMPLOYING TRANSPRECISION COMPUTING TECHNIQUES ON JPEG COMPRESSION SYSTEM

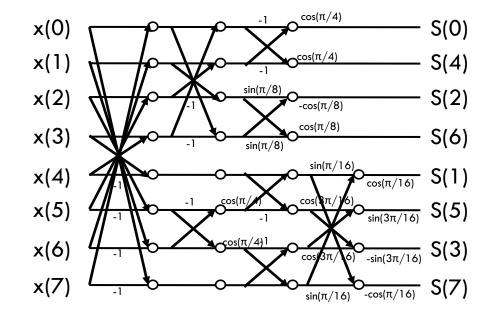
Tuba Ayhan 4.9.2019 ayhant@mef.edu.tr


NiPS Summer School 2019, Perugia, Italy Architectures and Algorithms for Energy-Efficient IoT and HPC Applications

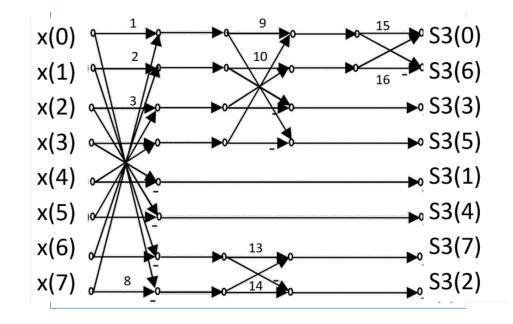
JPEG COMPRESSION SYSTEM


APPROXIMATION LEVELS

System level

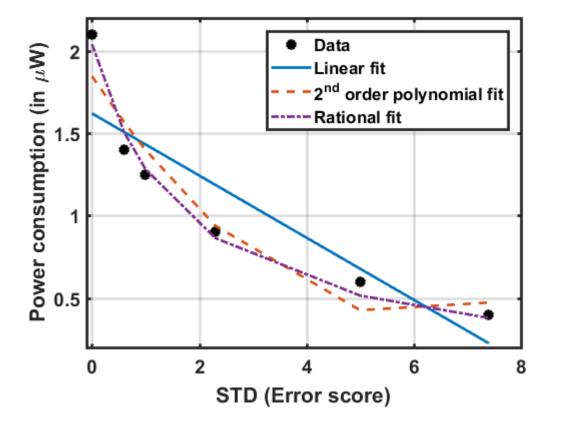

Block level – Compiler level

Circuit level



DISCRETE COSINE TRANSFORM

$$X_k = \sum_{n=0}^{N-1} x_n \cos \left[rac{\pi}{N} \left(n + rac{1}{2}
ight) k
ight] \qquad k=0,\ldots,N-1$$



16 Additions

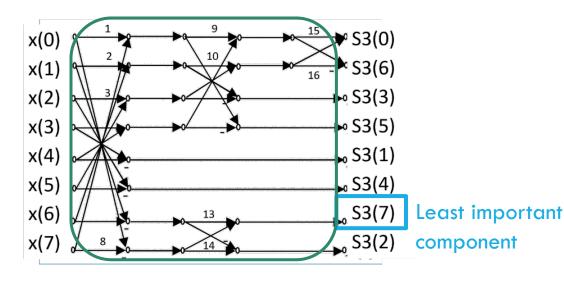
FIND OPTIMUM ADDERS


Minimize:

$$\sum_{i=1}^{N} P(\hat{X}_i)$$

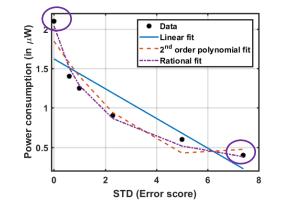
Total power consumption of arithmetic computing units will be minimized.

$$(= [X_1 \dots X_{16}] \rightarrow \text{Error of adder})$$



Power consumption of an adder: $P(X_i) = a \times X_i + b$

FIND OPTIMUM ADDERS

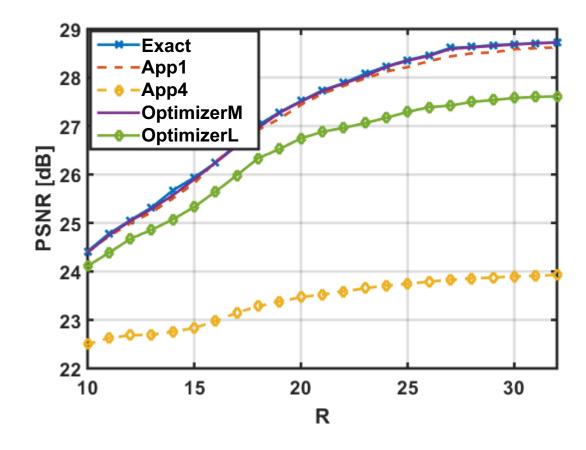

Minimize: Subject to:

 $\begin{array}{ll} \sum_{i=1}^{N} P(\hat{X}_{i}) \\ B\hat{X} \leq b \\ \hat{X} \geq LB \\ \hat{X} \leq UB \\ \hat{X}_{i} \in \mathbb{R} \ , \ 1 \leq i \leq N \end{array} \qquad \begin{array}{ll} \text{The desired performance will be maintained.} \\ \text{JPEG Compression} \xrightarrow{\rightarrow} \text{PSNR} \\ \text{b} \xrightarrow{\rightarrow} \text{MSE} \\ \hat{X}_{i} \in \mathbb{R} \ , \ 1 \leq i \leq N \end{array}$

 $B \rightarrow$ Connections within the blocks

 $UB \rightarrow 7.2$ $LB \rightarrow 0$

USE CASES


 Low PSNR requirement: Energy saving is very important, i.e. compressed image is transmitted from a battery-powered node in an IoT application.

- All identical approximate adders.
- Optimizer is used: 2dB PSNR loss is allowed.
- Medium PSNR requirement: Energy saving is important, i.e. compressed image is transmitted for entertainment in a social media application.
 - All identical approximate adders.
 - Optimizer is used: 0.5dB PSNR loss is allowed.
- High PSNR requirement: Baseline.
 - Exact adders are used.

RESULTS 1/2

Use-Case	Adders	Power [mW]	Power Saving [%]	PSNR [dB]	PSNR loss [%]
Low PSNR	ldentical app4	0.6575	48.0939	23.1716	19.5125
	OptimizerL	0.9475	25.1211	27.9481	4.1274
Medium PSNR	Identical app1	1.1650	7.8969	28.8644	0.9841
	OptimizerM	1.1175	11.6688	28.2875	2.9631
High PSNR	Exact	1.3671	-	29.1513	-

RESULTS 2/2

Appl

OptimizerM

OptimizerL

CONCLUSION

- 2 of 3 levels of approximation are used: block (compiler) level and circuit level.
- The adders are not optimized for FPGA implementation. Results can be improved by designing the circuits for the target platform.
- Algorithm level approximation (compression ratio) gives the best saving, as expected.
- Objective function of the optimizer can be linear or non-linear; non-linear objective function did not change the adder combination for this problem.

Thank you.

ayhant@mef.edu.tr