FIRST-PRINCIPLES MODELING OF MOLECULES AND MATERIALS



Energy conversion processes at heterogeneous interfaces: a quantum chemical perspective

**Prof. Michele Pavone** 

FPM3 lab - Department of Chemical Sciences University of Naples Federico II

Comp. Univ. Monte S. Angelo via Cintia, 80126 Naples - ITALY <u>michele.pavone@unina.it</u> <u>http://docenti.unina.it/michele.pavone</u>

## outline

- motivation & theoretical tools
- **CASE 1**: *dye-electrode interface in dye-sensitized solar cells*
- **CASE 2**: proton-conducting solid oxide fuel cells
  - electrode based on mixed proton-electron conductor
  - bifunctional electrocatalyst for ORR and OER
- CASE 3: electrocatalysis at oxide surface, the role of defects
  - Fe-doped ZrO<sub>2</sub> for low temperature FCs
  - Cu-Fe delafossite oxide for CO<sub>2</sub> reduction
- **method development**: Density Functional Embedding Theory



## challenges in renewable energy technologies

#### • renewable energy sources are discontinuous

- peaks can exceed grid capabilities => energy loss
- downs prevent sufficient energy supplies



• many of the current technologies are efficient, but this is not enough...

next generation of energy conversion device must rely on purposely tailored high-performance functional materials

### experiment - theory - simulations



## hierarchy of computational models



Time scales

# ab initio

- *ab initio* from the beginning *The Oxford Dictionary*
- ab initio calculation a method of calculating atomic and molecular structures directly from the first principles of quantum mechanics (QM), without using any quantities derived from experiment as parameters.

A Dictionary of Chemistry, Oxford University Press 2001

- The most chemically accurate, physically precise computation possible
- The holy grail of computational chemists
- No empirical input

### **PREDICTIVE POWER**

## the many-body problem

### time-independent Schrödinger equation

$$\hat{H}\Psi(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{N}) = E\Psi(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{N})$$

$$\hat{H} = -\sum_{\mu} \frac{1}{2M_{\mu}} \nabla_{\mu}^{2} - \sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,j>i} \frac{1}{r_{ij}} - \sum_{i,\mu} \frac{Z_{\mu}}{r_{i\mu}} + \sum_{\mu,\nu>\mu} \frac{Z_{\mu}Z_{\nu}}{R_{\mu\nu}}$$

Schrödinger eq. is exactly solvable only for:

- two particles (analytically)
- *few particles* (numerically)

### => WE NEED APPROXIMATIONS

# ab initio calculations: the main tool

**PES - Potential Energy Surface** 



- Molecular structures and dynamics - PES minima and trajectories
- Internal motions and free energy

   PES curvature
- Chemical reactivity - PES saddle points
- Molecular properties
  - Linear response theory

\*\* On the basis of the Born-Oppenheimer approximation

# => the many-electron problem

$$\hat{H}^{el}_{\{\vec{R}_{\mu}\}} = -\sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,j>i} \frac{1}{r_{ij}} + V^{ext}_{\{\vec{R}_{\mu}\}}(\{\vec{r}_{i}\})$$

### OLD and EXTREMELY hard problem to solve !

- all first-principles methods used today are **APPROXIMATE** after all, even if considered **EXACT** !!!
- they provide approximate solutions to the electronic Schrödinger eq.

some are more approximate than others

# first-principles approaches

QM Wave-Function methods

- Hartree-Fock (HF) theory (mean-field) HF: 99% of the true energy of the system
- Moeller-Plesset (MP) perturbation theory MP2: 80% of the last 1% (the correlation energy)
- Coupled Cluster (CC) theory CCSD(T): 95% of the correlation - Chemical Accuracy
- Multi Reference Configuration-Interaction (MRCI) full-CI: exact wave-function

MP2, CC, CI are very accurate but very expensive !!!

# first-principles approaches

Density Functional Theory (**DFT**)  $\Psi(\{\vec{r}_i\}) \rightarrow \rho(\vec{r})$ 

$$E[\rho_{GS}(\vec{r})] \equiv \int d^3 \vec{r} V_{ext}(\vec{r}) \rho(\vec{r}) + F[\rho(\vec{r})] = E_{GS}$$

- The functional of the electron density is UNKNOWN
- Kohn-Sham approach

kinetic energy of non-interacting electrons

$$E[\rho] = T_0[\rho] + \int d^3 \vec{r} \rho(\vec{r}) [V_{ext}(\vec{r}) + \frac{1}{2} \Phi(\vec{r})] + E_{xc}[\rho]$$

• Approximations for the XC functional LDA, GGA (PBE, PW91, BLYP), hybrid HF-DFT (B3LYP, PBE0)

# first-principles approaches

# **DFT** provides the best **ACCURACY:COST** ratio

- state-of-the-art method for extended materials
  - Periodic Boundary Conditions (super-cell approach)
  - Plane-wave basis set and pseudopotential
- workhorse method for molecular sciences
  - Localized basis set (GTO, Gaussian Type Orbitals)
- but XC approximations come with few known flaws
  - excited states (feasible via TD-DFT), self-interaction error
  - vdW dispersion, charge transfer, strong-correlated systems

## ab initio calculations: why?

- electrons have a leading role in many processes
   => charge tranfer, chemical reactions, excited states
- when high degree of accuracy is required
   => thermochemical and kinetics studies
- to avoid extensive parameterization
   => non-standard systems (e.g. defects, radicals)

# ab initio calculations: why?

### **Renewable enegry conversion and storage technologies**

- devices made of layered functional materials
- energy conversion occurs via complex processes of charge and mass transport across several heterogeneous interfaces

### **Development of new devices must be based on solid scientific grounds**

• rational design strategies need reliable and accurate assessments of structure-property-function relationships for any complex materials

### **Computational modelling offers several valuable tools**

- photo-excitations, chemical reactions, electrochemical processes depend all on the **quantum mechanical** behaviour of electrons
- *first-principles* methods based on **Density Functional Theory** provide the best balance between accuracy and feasibility

# CASE 1: solar energy and dye-sensitized solar cells



- sunlight is the most abundant renewable energy source



### Merits of DSSCs:

- cheap materials
- flexible and transparent
- good for indoor light recycling

since early 90s - Dye-Sensitized Solar Cells
cost-effective alternative to solid-state Si-based PV
heterogeneous photo-anodes (n-type SC + dye)
liquid electrolyte (I<sup>-</sup>/I<sub>3</sub><sup>-</sup> in ACN solution)
metallic counter-electrode



B. O'Regan, M. Grätzel, *Nature* 353, 737 (1991)

# solar energy and dye-sensitized solar cells

#### **Best Research-Cell Efficiencies**



- most of DSSC research groups have shifted to PSC => what future for DSSC ?

## what future for dye sensitized solar cells?





#### need to improve photocathode efficiency!

A. Hagfeldt et al., Chem. Rev. 110, 6595 (2010)

F. Odobel et al., Acc. Chem. Res. 43, 1063 (2010)

## photo-cathode: p-type DSSC functioning scheme



### limits of current p-DSSCs

- too slow hole injection
- fast charge recombination

#### desired processes

- electron injection from dye to electrolyte
- hole injection from Dye to VB

#### undesired processes

- charge recombination
- hole transfer to the electrolyte

### **DESIGN GUIDELINES**

- **dye**: good sunlight adsorption
- dye-electrode interface:
  - strong dye-electrode binding
  - good driving force for hole injection ( $\Delta E$ )
- **electrode**: low VB edge absolute position (V<sub>oc</sub>)

## *p-DSSC systems: dyes on NiO p-type SC*









#### nickel oxide - NiO

- rocksalt structure
- CT band gap (≈3.5 eV)
- AFM along 111 planes
- DFT-PBE+U
- *ab initio* U-J(Ni *d*)= 3.8 eV

### NiO (100) surface

- supercell slab model
- 5 atomic layers (tested up to 9)
- $(\sqrt{2} \times \sqrt{2})$  along the xy plane (80 atoms)
- vacuum > 30 Å along the z direction
- dipole correction

## *p-NiO(001)/Coumarin interface:* **anchoring modes**



A. B. Muñoz-García, M. Pavone Phys. Chem. Chem. Phys. 17, 12238 (2015)

## *p-NiO(001)/Coumarin interface:* anchoring modes



A. B. Muñoz-García, M. Pavone Phys. Chem. Chem. Phys. 17, 12238 (2015)

## *p*-NiO(001)/dye interface: *push-pull dye*



- intramolecular charge tansfer (ICT) upon photoexcitation
- LUMO is far from the anchoring groups
- two possible conformations on Ni(100)



## *p*-NiO(001)/dye interface: *push-pull dye*



- polar solvents improve the hole injection driving force
- LUMO far from p-SC avoids charge recombination

## p-NiO(001)/dye - tuning dye molecular features



TD-DFT (CAM-B3LYP) calculations in ACN

| Dye | λ <sub>max</sub> (nm) | f     | Е <sub>0-0</sub><br>(eV) | Е <sub>номо</sub><br>(eV) | E <sub>LUMO</sub><br>(eV) |
|-----|-----------------------|-------|--------------------------|---------------------------|---------------------------|
| C1  | 361                   | 1.347 | 3.10                     | -6.06                     | -2.96                     |
| C2  | 389                   | 1.626 | 2.75                     | -6.00                     | -3.25                     |
| C3  | 425                   | 1.165 | 2.57                     | -5.85                     | -3.28                     |

#### ICT metrics: $D_{CT}$ in Å and $q_{CT}$ in $e^{-1}$

| <b>D</b> | D <sub>ct</sub> (Å) |                   | q <sub>c⊤</sub> (e⁻) |                | Dipole (D)     |                |
|----------|---------------------|-------------------|----------------------|----------------|----------------|----------------|
| Dye      | S <sub>0</sub>      | $S_0 S_1 S_0 S_1$ |                      | S <sub>1</sub> | S <sub>0</sub> | S <sub>1</sub> |
| C1       | 2.65                | 2.23              | 0.601                | 0.536          | 7.652          | 5.740          |
| C2       | 2.83                | 1.16              | 0.642                | 0.500          | 8.722          | 2.797          |
| C3       | 3.45                | 2.62              | 0.694                | 0.593          | 11.495         | 7.454          |

- the electron acceptor group changes optical and electronic properties

## *p*-NiO(001)/dye - tuning dye molecular features

PV performances (in collaboration with UNITO and POLITO)

| Dvo | V <sub>oc</sub> (mV) |     | J <sub>sc</sub> (mA cm <sup>-2</sup> ) |       | FF (%) |      | PCE (%) |        |
|-----|----------------------|-----|----------------------------------------|-------|--------|------|---------|--------|
| Dye | 1d                   | 50d | 1d                                     | 50d   | 1d     | 50d  | 1d      | 50d    |
| C1  | 132                  | 141 | 0.942                                  | 0.946 | 37.0   | 37.0 | 0.0460  | 0.0494 |
| C2  | 104                  | 118 | 0.380                                  | 0.280 | 44.8   | 51.7 | 0.0177  | 0.0171 |
| C3  | 93                   | 132 | 0.620                                  | 0.590 | 35.2   | 34.4 | 0.0203  | 0.0268 |





- the hole-injection driving force is a key feature

## *p*-NiO(001)/dye - tuning dye molecular features

PV performances (in collaboration with UNITO and POLITO)



- dye conformation is crucial to avoid charge recombination

## p-type DSSC: conclusions and perspectives

- p-type DSSC can be improved with tailored modification at the dye-electrode interfaces
- push-pull dyes are promising, but it is important to control the dye orientation with respect to the electrode surface
- DFT-based approaches (DFT+U, hybrid HF-DFT) are playing a pivotal role in guiding the experimental design of new systems
- electrode-dye-electrolyte interactions in aqueous solution
- charge transfer processes (excited states, non equilibrium solvation at heterogeneous interfaces)
- electrochemical reactions (HER/OER) for photo-catalysis of water splitting

## **CASE 2:** *H*<sub>2</sub> *fuel cells => clean electric power generation*

 FCs are electrochemical devices that convert fuels (chemical energy) into electrical energy



some examples:

- Alkaline FC
- PEM FC
- Solid Oxide FC







### **Proton-Conducting Electrochemical Cells**

low cost oxides (no Pt) Intermediate Temperatures (~500°C):

- higher mobility of H<sup>+</sup> wrt O<sup>2-</sup>
- minimize degradation
- $H_2$  + fuels (FC)
- less electric demand than Low T (EC)

### **Proton-Conducting Solid Oxide Electrochemical Cells**

#### ELECTROLYTES

insulator proton conductor

- oxygen vacancies V<sub>o</sub>
- low H<sup>+</sup> migration barrier

 $H_2O + M-V_O-M + M-O-M => 2 \cdot M-O(H)-M$ 



e<sup>-</sup> (metal) or composite IDEAL ELECTRODE MIEC (mixed  $e^{-}/O^{2-}$ ) electrode mixed  $e^{-}/H^{+}$ e<sup>-</sup> conductor catalytic activity proton conductor - Oxygen vacancies  $V_{0}$ - Low H<sup>+</sup> migration barrier PC-Electrolyte **PC-Electrolyte PC-Electrolyte TCOs MPECs** state-of-the-art target system

Induce e<sup>-</sup> conductivity in PC-electrolytes Induce PC in MIEC materials

# SFMO as TCO candidate

Sr(Fe,Mo)O<sub>3</sub>



# Outstanding electrocatalytic performance in symmetric OC-SOFCs

Redox stability, no poisoning

**Excellent MIEC properties** 

- Non-stoichiometric Sr<sub>2</sub>Fe<sub>1.5</sub>Mo<sub>0.5</sub>O<sub>6- $\delta$ </sub> ( $\delta$ =0.10)
- Low O<sup>2-</sup> migration barrier (~0.3 eV)

Is also a good proton conductor ?

#### A-substitutions



| Ionic Ra         | adii (Å) |
|------------------|----------|
| Sr <sup>2+</sup> | 1.44     |
| Ba <sup>2+</sup> | 1.61     |
| K+               | 1.64     |

#### Ba<sup>2+</sup> structural effects

K<sup>+</sup> structural/electronic effects (p-doping)

Ana B. Muñoz-García et. al *J. Am. Chem. Soc. 134,* 6826 (2012) Ana B. Muñoz-García et. al *Phys. Chem. Chem. Phys.,* **15,** 6250 (2013) Ana B. Muñoz-García et. al *Acc. Chem. Res.,* **47,** 3340 (2014)

## computational strategy







# structure and energetics

| Material a(Å) |       | 8     | <b>∕</b> ∕E <sub>form</sub> | $\Delta E_{hydr}$ |        |
|---------------|-------|-------|-----------------------------|-------------------|--------|
| Iviacentai    | ۵(۲)  | U     | Fe-O-Fe                     | Mo-O-Fe           | (eV)   |
| SFMO          | 7.872 | 0.125 | -0.090                      | 1.28              | -0.328 |
| BSFMO         | 7.948 | 0.25  | 0.023                       | 1.42              | -0.353 |
| KSFMO         | 7.917 | 0.25  | -0.297                      | 0.619             | -1.166 |





 $\delta_{\text{KSFMO}} > \delta_{\text{BSFMO}} > \delta_{\text{SFMO}}$ 



Solid State ionics , **259,** 1 (2014)



**SFMO** and **BSFMO** 

- Mo-O(H)-Fe unstable
- Only Outwards Fe-O(H)-Fe



#### KSFMO

- Mo-O(H)-Fe stabilized by K
- Both Outwards and Inwards Fe-O(H)-Fe

## electronic structure



dry

fully hydrated

dry SFMO, BSFMO, KSFMO MIEC hydration affects carrier mobility in SFMO and BSFMO

fully hydrated KSFMO likely performs as good electron conductor

Ana B. Muñoz-Garcia, Michele Pavone Chem. Mater. 2016, 28, 490

## proton migration



## electrocatalytic capabilities

| oxygen reduction reaction<br>(ORR)         |
|--------------------------------------------|
| $O_2 + 2H_2 \rightarrow 2H_2O$             |
| $*O_2 + 1H^+ + 1e^- \rightarrow *OOH$      |
| $*OOH + 1H^+ + 1e^- \rightarrow *O + H_2O$ |
| $*O + 1H^+ + 1e^- \rightarrow *OH$         |
| $*OH + 1H^+ + 1e^- \rightarrow * + H_2O$   |
| $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$      |

Nørskov computational NHE U=0  $\mu(H^+) + \mu(e^-) = \frac{1}{2}\mu(H_2)$ U≠0  $\mu(H^+) + \mu(e^-) = \frac{1}{2}\mu(H_2) - eU$  $E_{H_2O/O_2}^O = 1.23V \Longrightarrow E_{H_2O/O_2}^{DFT} = 1.11V$  oxygen evolution reaction (OER)  $2H_2O \rightarrow O_2 + 2H_2$   $* + H_2O \rightarrow *OH + 1H^+ + 1e^ *OH \rightarrow *O + 1H^+ + 1e^ *O + H_2O \rightarrow *OOH + 1H^+ + 1e^ *OOH \rightarrow *O_2 + 1H^+ + 1e^ 2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ 

$$\begin{split} \Delta G_{1-4} &= \Delta E + (\Delta ZPE - T\Delta S) - eU \\ U_{ONSET} \implies \Delta G_{1-4}^{ORR/OER} \leq 0 \\ \eta^{ORR} &= 1.11V - U_{ONSET} \\ \eta^{OER} &= U_{ONSET} - 1.11V \end{split}$$